980 resultados para driven harmonic oscillator classical dynamics
Resumo:
Fungal entomopathogens have been used more frequently than other types of pathogens for classical biological control. Among 136 programs using different groups of arthropod pathogens, 49.3% have introduced fungal pathogens (including both the traditional fungi and microsporidia). The most commonly introduced species was Metarhizium anisopliae (Metschnikoff) Sorokin, with 13 introductions, followed by Entomophaga maimaiga Humber, Shimazu & Soper, which was released seven times. The majority of introduction programs have focused on controlling invasive species of insects or mites (70.7%) rather than on native hosts (29.4%). Almost half of the introductions of traditional fungi targeted species of Hemiptera and 75% of the microsporidia introduced have been introduced against lepidopteran species. The United States was the country where most introductions of fungi took place (n = 24). From 1993 to 2007, no arthropod pathogens were released in the US due to the rigorous regulatory structure, but in 2008 two species of microsporidia were introduced against the gypsy moth, Lymantria dispar (L.). Establishment of entomopathogenic fungi in programs introducing traditional fungi was 32.1% and establishment was 50.0% for programs introducing microsporidia. In some programs, releases have resulted in permanent successful establishment with no non-target effects. In summary, classical biological control using fungal entomopathogens can provide a successful and environmentally friendly avenue for controlling arthropod pests, including the increasing numbers of invasive non-native species.
Resumo:
Nutrient dynamics in tropical soils sustaining forage grasses are still poorly understood. We conducted a study to evaluate the effect of combined N and S fertilizer rates on the growth of `Marandu` palisade grass [Brachiaria brizantha (Hochst. ex A. Rich.) Stapf], uptake of these elements from the soil by plants, soil organic matter concentration, soil pH, and the mineral and organic fractions of N and S in an Entisol. Combinations of five N rates (0, 100, 200, 300, and 400 g N m(-3)) with five S rates (0, 10, 20, 30, and 40 g S m(-3)) were evaluated in a partial 5 x 5 factorial in a pot experiment, with and without plants. Nitrogen and S were supplied as NH(4)NO(3) and CaSO(4)center dot 2H(2)O, respectively. The N addition in excess did not enhance the palisade grass production due to low plant-available Sin the soil. The supply of low rates of S with N greatly improved the overall N uptake efficiency by the forage plant. The contents of total N, NO(3)(-)-N, and NH(4)(+)-N in the soil varied with N rate and with N uptake by the plants. The association of palisade grass with S fertilization increased the ester-bonded S fraction in the soil. The results suggest that soil residual S could be a potential source of S for plants. Proper N and S fertilizer rates promoted increased grass production due to increased uptake of these nutrients and the dynamics of the organic N and S fractions and mineral fractions in this tropical soil.
Resumo:
The short-term effects of surface lime application and black oat (Avena strigosa Schreb.) residues, with or without N fertilization, were evaluated in a long-term no-till (NT) system on a sandy clay loam, a kaolinitic, thermic Typic Hapludox from the state of Parana, Brazil. The main plot treatments were: control and dolomitic lime applied on soil surface at 8 Mg ha(-1). Three treatments with crop residues were evaluated on the subplots: (i) fallow, (ii) black oat residues, and (iii) black oat residues aft er N fertilization at 180 kg ha(-1). Black oat dry biomass was not affected by the treatments during 3 yr. Surface liming increased soil pH, microbial biomass, microbial activity, and bacterial/fungal ratio at the soil surface (0-5 cm), resulting in increased amino acid turnover, water-soluble humic substances formation, and N mineralization and nitrification. While the application of black oat did increase the soil pH, overall it had much less effect on soil biological processes and C and N pools than did lime. We concluded that black oat cannot replace the need for lime to optimize crop production in these tropical NT systems. In the long term, however, black oat should aid in the amelioration of acidity and replenishment of soil organic C pools and should help reduce erosion. Overall, this study suggests that overapplication of inorganic fertilizer N may occur in some tropical NT systems. Further experiments are required in NT systems to investigate the use of slow-release N fertilizers in combination with lime and black oat as a mechanism to reduce acidification and promote sustainability.
Resumo:
introduction of conservation practices in degraded agricultural land will generally recuperate soil quality, especially by increasing soil organic matter. This aspect of soil organic C (SOC) dynamics under distinct cropping and management systems can be conveniently analyzed with ecosystem models such as the Century Model. In this study, Century was used to simulate SOC stocks in farm fields of the Ibiruba region of north central Rio Grande do Sul state in Southern Brazil. The region, where soils are predominantly Oxisols, was originally covered with subtropical woodlands and grasslands. SOC dynamics was simulated with a general scenario developed with historical data on soil management and cropping systems beginning with the onset of agriculture in 1900. From 1993 to 2050, two contrasting scenarios based on no-tillage soil management were established: the status quo scenario, with crops and agricultural inputs as currently practiced in the region and the high biomass scenario with increased frequency of corn in the cropping system, resulting in about 80% higher biomass addition to soils. Century simulations were in close agreement with SOC stocks measured in 2005 in the Oxisols with finer texture surface horizon originally under woodlands. However, simulations in the Oxisols with loamy surface horizon under woodlands and in the grassland soils were not as accurate. SOC stock decreased from 44% to 50% in fields originally under woodland and from 20% to 27% in fields under grasslands with the introduction of intensive annual grain crops with intensive tillage and harrowing operations. The adoption of conservation practices in the 1980s led to a stabilization of SOC stocks followed by a partial recovery of native stocks. Simulations to 2050 indicate that maintaining status quo would allow SOC stocks to recover from 81% to 86% of the native stocks under woodland and from 80% to 91 % of the native stocks under grasslands. Adoption of a high biomass scenario would result in stocks from 75% to 95% of the original stocks under woodlands and from 89% to 102% in the grasslands by 2050. These simulations outcomes underline the importance of cropping system yielding higher biomass to further increase SOC content in these Oxisols. This application of the Century Model could reproduce general trends of SOC loss and recovery in the Oxisols of the Ibiruba region. Additional calibration and validation should be conducted before extensive usage of Century as a support tool for soil carbon sequestration projects in this and other regions can be recommended. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol-Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero-tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron-depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al-bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo-Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.
Resumo:
Bulk milk was collected from 100 farms throughout the year and analysed after storage for either 24, 48 or 72 h, using flow cytometry. The total bacterial counts obtained by two methods - flow cytometry and standard plate count were compared and the conversion relationship between them was assessed: the results showed no effect of the age of the samples relationship between these two methods.
Resumo:
Plant communities on pastures adapt to varying frequencies and severities of defoliation through mechanisms capable of ensuring their longevity and photosynthetic efficiency. The objective of this experiment was to evaluate tiller population density, demographic patterns of tillering and population stability of palisadegrass swards subjected to four grazing intensities. Treatments corresponded to four sward steady state conditions (sward heights of 10, 20, 30 and 40 cm) generated by continuous stocking. Measurements of tiller population density and population dynamics were performed at 4 week intervals and the results were used to calculate tiller appearance, death and survival rates. Tiller appearance and death rate were used to calculate sward stability index. The results indicate that keeping swards low (10 cm or lower) may be prejudicial to persistency and productivity of palisadegrass. The results also indicate that a low tiller population alone should not be considered as an indicator of loss of productive potential and of reduced plant persistency, since swards may be stable even with low population of tillers.
Resumo:
There is a great need of research to assess the behavior of micronutrients in natural forests of southern Brazil. Do to this need, the objective of this work was to study the levels and amounts of micronutrients in forest above ground biomass of the forest, in a comparative way, in two secondary succession stages (SSS) in a Seasonal Deciduous Forest in Rio Grande do Sul, Brazil. The SSS had enjoyed 35 and 55 years of regeneration since the end of agricultural use, respectively for initial secondary forest (ISF) and late secondary forest (LSF). The above-ground biomass was collected and separated into vegetative strata and these in fractions, thereafter chemically analyzed for the levels of B, Fe, Zn, Mn and Cu. Leaf fractions of arboreal, shrubs and herbaceous strata showed the highest levels for most nutrients. Only the levels of iron and manganese were higher in the bark fraction, for both sucession stages. In the LSF, the herbaceous stratum also showed high levels of Fe. The average levels of micronutrients showed differences between the two sucession stages only in relation to Fe and Mn, with higher levels in LSF biomass. The amount of nutrients stored was always higher in LSF, because of the largest biomass and the higher levels of Fe and Mn in the biomass of this SSS. The quantitative order of nutrient storage in biomass was Fe> Mn> Zn> B> Cu.
Resumo:
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Resumo:
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.
Resumo:
The feasibility of characterizing the dynamics of a spouted bed based on acoustic emission (AE) signals is evaluated. Acoustic emission signals were measured in a semi-cylindrical Plexiglas column of diameter 150 mm and height 1000 mm with a conical base of internal angle 60 degrees and 25 mm inlet orifice diameter. Data were obtained for U/U(ms), from 0.3 to 2.0, static bed height from 250 to 500 mm, and glass beads of diameter 1.2 and 2.4 mm. AE signals reflected the effects of particle size and U/U(ms), but in general were insensitive to bed depth, even when there were drastic changes in spouting flow patterns. The results indicate that the AE signals were insensitive to the spouted bed hydrodynamics for the conditions studied. Overall, it appears that the AE analysis is unlikely to be a suitable technique for discriminating spouted bed flow regimes, at least for the range of frequencies and operating conditions investigated.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.
Resumo:
We analyze the dynamics of a dilute, trapped Bose-condensed atomic gas coupled to a diatomic molecular Bose gas by coherent Raman transitions. This system is shown to result in a new type of “superchemistry,” in which giant collective oscillations between the atomic and the molecular gas can occur. The phenomenon is caused by stimulated emission of bosonic atoms or molecules into their condensate phases.
Resumo:
The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.