959 resultados para dissipation in field theory
Resumo:
On the presumption that a sharp edge may be represented by a hyperbola, a conformal transformation method is used to derive electric field equations for a sharp edge suspended above a flat plate. A further transformation is then introduced to give electric field components for a sharp edge suspended above a thin slit. Expressions are deduced for the field strength at the vertex of the edge in both arrangements. The calculated electric field components are used to compute ion trajectories in the simple edge/flat-plate case. The results are considered in relation to future study of ion focusing and unimolecular decomposition of ions in field ionization mass spectrometers.
Resumo:
Turbulence and internal waves are probably important in generating layered structures in frontal region of marine environments (e.g. near river plumes outflow into the sea). Here we investigate the role of normal modes of internal waves in generation of layered structure in a part of Persian Gulf where river plume inters and in some laboratory experiments. The model prediction and observations show that layers so formed have a thickness of about 2m based on salinity variations with depth, but layers (about 5m) based on horizontal velocity profiles. Laboratory experiments with a plume outflow in a Filling Box profile also generate normal mode layered structure with 21H=0.5 (where A is layer thickness and H is the plume depth). In these experiments as Re of the flow is smaller than the Re of field flow. The normal modes are substantially dissipated with depth. Typical values of dissipation factor is about 0(100). This factor for field observation is 0(10) which is still substantial. Qualitative comparison between layered structure in field and laboratory is good. It should be emphasized that field observation is for semi-enclosed seas but the laboratory experiments are for enclosed region. Hence some of the discrepancies in the results of two cases are inevitable. Layered structures in marine environments are also produced by double diffusive convection. In this region this should be studied separately.
Resumo:
A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.
Resumo:
A systematic diagrammatic expansion for Gutzwiller wavefunctions (DE-GWFs) proposed very recently is used for the description of the superconducting (SC) ground state in the two-dimensional square-lattice t-J model with the hopping electron amplitudes t (and t') between nearest (and next-nearest) neighbors. For the example of the SC state analysis we provide a detailed comparison of the method's results with those of other approaches. Namely, (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results and (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed 'grand-canonical Gutzwiller approximation' (called either GCGA or SGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a d(x2-y2) wave only for optimally and overdoped systems, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the
Resumo:
We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale p*. This scale appears to vanish faster than the Compton scale, mc, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behaviour observed on the lattice.
Resumo:
A better understanding of grapevine responses to drought and high air temperatures can help to optimize vineyard management to improve water use efficiency, yield and berry quality. Faster and robust field phenotyping tools are needed in modern precision viticulture, in particular in dry and hot regions such as the Mediterranean. Canopy temperature (Tc) is commonly used to monitor water stress in plants/crops and to characterize stomatal physiology in different woody species including Vitis vinifera. Thermography permits remote determination of leaf surface or canopy temperature in the field and also to assess the range and spatial distribution of temperature from different parts of the canopies. Our hypothesis is that grapevine genotypes may show different Tc patterns along the day due to different stomatal behaviour and heat dissipation strategies. We have monitored the diurnal and seasonal course of Tc in two grapevine genotypes, Aragonez (syn. Tempranillo) and Touriga Nacional subjected to deficit irrigation under typical Mediterranean climate conditions. Temperature measurements were complemented by determination of the diurnal course of leaf water potential (ψleaf) and leaf gas exchange. Measurements were done in two seasons (2013 and 2014) at different phenological stages: i) mid-June (green berry stage), ii) mid-July (veraison), iii) early August (early ripening) and iv) before harvest (late ripening). Correlations between Tc and minimal stomatal conductance will be presented for the two genotypes along the day. Results are discussed over the use of thermal imagery to derive information on genotype physiology in response to changing environmental conditions and to mild water stress induced by deficit irrigation. Strategies to optimize the use of thermal imaging in field conditions are also proposed
Resumo:
This study investigates the ‘self’ of six Irish working-class women, all parenting alone and all returned to the field of adult education. Bourdieu’s concepts of habitus, field and capital are the backdrop for the study of the ‘self’, which is viewed through his lens. This study commenced in September 2012 and concluded in August 2014, in a small urban educational setting in an Irish city. All of the women in the study are single parents, most of them did not complete second level education, and none of them had experienced adult or third level education. Their ages vary from 30 to 55 years. The study pursues the women’s motivations for returning to education, the challenges they faced throughout the journey, and their experiences, views and perspectives of Adult Education. The methodology chosen for this research is critical eethnography, and as an emerging ethnographer, I was able to view the phenomena from both an emic (inside) and an etic (outside) perspective. The critically oriented approach is a branch of qualitative research. It is a holistic and humanistic approach that is cyclical and reflective. The critical ethnographic case studies that developed are theoretically framed in critical theory and critical pedagogy. The data is collected from classroom observations (recorded in a journal) and interviews (both individual and group). The women's life experiences inform their sense of self and their capital reserves derive from their experience of habitus. It also attempts to understand the delivery of the programmes and how it can impact the journey of the adult learners. The analysis of the interviews, observations, field notes and reflective journals demonstrate what the women have to say about their new journey in adult education. This crucial information informs best practice for adult education programmes. This study also considers the complexity of habitus and the many forms of capital. The theme of adults returning to education and their disposition to this is one of the major themes of this study. Findings reflect this uncertainty but also underline how the women unshackled themselves of some of the constraints of a restricted view of self. Witnessing this new habitus forming was the core of their transformational possibility becoming real. The study provides a unique contribution to knowledge as it utilises Bourdieuian concepts and theories, not only as theoretical tools but as conceptual tools for analysis. The study examined transformative pedagogy in the field of adult education and it offers important recommendations for future policy and practice.
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.
Resumo:
In this master's thesis, the formation of Primordial Black Holes (PBHs) in the context of multi-field inflation is studied. In these models, the interaction of isocurvature and curvature perturbations can lead to a significant enhancement of the latter, and to the subsequent production of PBHs. Depending on their mass, these can account for a significant fraction (or, in some cases, the entirety) of the universe's Dark Matter content. After studying the theoretical framework of generic N-field inflationary models, the focus is restricted to the two-field case, for which a few concrete realisations are analysed. A numerical code (written in Wolfram Mathematica) is developed to make quantitative predictions for the main inflationary observables, notably the scalar power spectra. Parallelly, the production of PBHs due to the dynamics of 2-field inflation is examined: their mass, as well as the fraction of Dark Matter they represent, is calculated for the models considered previously.
Resumo:
In old, phosphorus (P)-impoverished habitats, root specializations such as cluster roots efficiently mobilize and acquire P by releasing large amounts of carboxylates in the rhizosphere. These specialized roots are rarely mycorrhizal. We investigated whether Discocactus placentiformis (Cactaceae), a common species in nutrient-poor campos rupestres over white sands, operates in the same way as other root specializations. Discocactus placentiformis showed no mycorrhizal colonization, but exhibited a sand-binding root specialization with rhizosheath formation. We first provide circumstantial evidence for carboxylate exudation in field material, based on its very high shoot manganese (Mn) concentrations, and then firm evidence, based on exudate analysis. We identified predominantly oxalic acid, but also malic, citric, lactic, succinic, fumaric, and malonic acids. When grown in nutrient solution with P concentrations ranging from 0 to 100 μM, we observed an increase in total carboxylate exudation with decreasing P supply, showing that P deficiency stimulated carboxylate release. Additionally, we tested P solubilization by citric, malic and oxalic acids, and found that they solubilized P from the strongly P-sorbing soil in its native habitat, when the acids were added in combination and in relatively low concentrations. We conclude that the sand-binding root specialization in this nonmycorrhizal cactus functions similar to that of cluster roots, which efficiently enhance P acquisition in other habitats with very low P availability.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física