840 resultados para deprivation of liberty
Resumo:
An essential aspect of school effectiveness theory is the shift from the social to the organisational context, from the macro- to the micro-culture. The school is represented largely as a bounded institution, set apart, but also in a precarious relationship with the broader social context. It is ironic that at a time when social disadvantage appears to be increasing in Britain and elsewhere, school effectiveness theory places less emphasis on poverty, deprivation and social exclusion. Instead, it places more emphasis on organisational factors such as professional leadership, home/school partnerships, the monitoring of academic progress, shared vision and goals. In this article, the authors evaluate the extent to which notions of effectiveness have displaced concerns about equity in theories of educational change. They explore the extent to which the social structures of gender, ethnicity, sexualities, special needs, social class, poverty and other historical forms of inequality have been incorporated into or distorted and excluded from effectiveness thinking.
Resumo:
Growth responses to oestrogen can be reproducibly obtained using a selection of oestrogen-receptor-containing human breast cancer cell lines, and molecular mechanisms have been shown to include modulation to growth factor/receptor/signalling pathways, cell-cycle proteins, apoptosis, differentiation, adhesion, motility and migration. Considerable progress has been made in understanding the molecular basis of oestrogen action on gene expression through the ligand-activated transcription factors human oestrogen receptor α (ERα) and ERβ and the resulting effects on global gene expression patterns, but the full profile of coordination of the alterations, which brings about changes in cell growth through genomic and non-genomic mechanisms remain to be fully elucidated. Oestrogen regulation of cell growth involves a complex cross-talk between oestrogen receptor and growth factor signalling pathways such that inhibition of one pathway may lead to stimulation of another, which may explain the remarkable ability of human breast cancer cells to escape from any mode of imposed growth inhibition be it oestrogen deprivation or administration of antioestrogen. Although studies on cell growth have focused to date on the effects of physiological oestrogens, many hundreds of environmental chemicals with oestrogenic properties have now been measured in the human breast. Whether or not the weight of evidence eventually establishes any causal link of complex mixtures of environmental oestrogenic chemicals with breast cancer, the presence of so many oestrogenic chemicals in the breast must influence resulting oestrogenic responses, and the impact of this additional oestrogenic burden needs to be taken into account in future studies on growth regulation of human breast cancer cells.
Resumo:
Factors influencing the use of chemotherapy for the initial (6 months) treatment of lung cancer in South East England were investigated. The variables explored as possibly influencing the use of chemotherapy were sex, age, the year of diagnosis, the type of lung cancer, the stage, the index of multiple deprivation and the cancer network of residence. Chi2 analysis and multivariate logistic regression models were used to examine the effect of each of the variables on the use of chemotherapy. The results showed a highly significant trend in use of chemotherapy over time; the adjusted proportion of patients receiving chemotherapy increasing from 13.6% in 1994 to 29.3% in 2003. However, age, cancer network and type of lung cancer had the strongest influence on the use of chemotherapy. This finding is important when we consider that the NHS Cancer Plan aims at improving inequalities in cancer care in the UK.
Resumo:
Influences on the use of chemotherapy for the treatment of cancer within the South East region of England for patients diagnosed with colorectal, lung, breast and prostate cancer were investigated. The variables investigated as possibly influencing the selection of chemotherapy were the sex of the patients, their age, the year of diagnosis, the cancer site, the cancer stage, the index of multiple deprivation (IMD) and the cancer network of residence. Logistic regression used to adjust the proportion receiving chemotherapy in relation to other variables considered showed significant differences in the proportion of patients receiving chemotherapy between different cancer sites and different networks. There was also a highly significant trend seen in use of chemotherapy over time; the adjusted proportion of patients receiving chemotherapy increasing from 10.6% in 1993 to 24.3% in 2002. Age, stage and cancer site seemed to have the most influence on the use of chemotherapy.
Resumo:
Neural stem cells (NSCs) are potential sources for cell therapy of neurodegenerative diseases and for drug screening. Despite their potential benefits, ethical and practical considerations limit the application of NSCs derived from human embryonic stem cells (ES) or adult brain tissue. Thus, alternative sources are required to satisfy the criteria of ready accessibility, rapid expansion in chemically defined media and reliable induction to a neuronal fate. We isolated somatic stem cells from the human periodontium that were collected during minimally invasive periodontal access flap surgery as part of guided tissue regeneration therapy. These cells could be propagated as neurospheres in serum-free medium, which underscores their cranial neural crest cell origin. Culture in the presence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) under serum-free conditions resulted in large numbers of nestin-positive/Sox-2-positive NSCs. These periodontium-derived (pd) NSCs are highly proliferative and migrate in response to chemokines that have been described as inducing NSC migration. We used immunocytochemical techniques and RT-PCR analysis to assess neural differentiation after treatment of the expanded cells with a novel induction medium. Adherence to substrate, growth factor deprivation, and retinoic acid treatment led to the acquisition of neuronal morphology and stable expression of markers of neuronal differentiation by more than 90% of the cells. Thus, our novel method might provide nearly limitless numbers of neuronal precursors from a readily accessible autologous adult human source, which could be used as a platform for further experimental studies and has potential therapeutic implications.
Resumo:
Assessments concerning the effects of climate change, water resource availability and water deprivation in West Africa have not frequently considered the positive contribution to be derived from collecting and reusing water for domestic purposes. Where the originating water is taken from a clean water source and has been used the first time for washing or bathing, this water is commonly called “greywater”. Greywater is a prolific resource that is generated wherever people live. Treated greywater can be used for domestic cleaning, for flushing toilets where appropriate, for washing cars, sometimes for watering kitchen gardens, and for clothes washing prior to rinsing. Therefore, a large theoretical potential exists to increase total water resource availability if greywater were to be widely reused. Locally treated greywater reduces the distribution network requirement, lower construction effort and cost and, wherever possible, minimising the associated carbon footprint. Such locally treated greywater offers significant practical opportunities for increasing the total available water resources at a local level. The reuse of treated greywater is one important action that will help to mitigate the reducing availability of clean water supplies in some areas, and the expected mitigation required in future aligns well with WHO/UNICEF (2012) aspirations. The evaluation of potential opportunities for prioritising greywater systems to support water reuse takes into account the availability of water resources, water use indicators and published estimates in order to understand typical patterns of water demand. The approach supports knowledge acquisition regarding local conditions for enabling capacity building for greywater reuse, the understanding of systems that are most likely to encourage greywater reuse, and practices and future actions to stimulate greywater infrastructure planning, design and implementation. Although reuse might be considered to increase the uncertainty of achieving a specified quality of the water supply, robust methods and technologies are available for local treatment. Resource strategies for greywater reuse have the potential to consistently improve water efficiency and availability in water impoverished and water stressed regions of Ghana and West Africa. Untreated greywater is referred to as “greywater”; treated greywater is referred to as “treated greywater” in this paper.
Resumo:
The low activity variant of the monoamine oxidase A (MAOA) functional promoter polymorphism, MAOA-LPR, in interaction with adverse environments (G × E) is associated with child and adult antisocial behaviour disorders. MAOA is expressed during foetal development so in utero G × E may influence early neurodevelopment. We tested the hypothesis that MAOA G × E during pregnancy predicts infant negative emotionality soon after birth. In an epidemiological longitudinal study starting in pregnancy, using a two stage stratified design, we ascertained MAOA-LPR status (low vs. high activity variants) from the saliva of 209 infants (104 boys and 105 girls), and examined predictions to observed infant negative emotionality at 5 weeks post-partum from life events during pregnancy. In analyses weighted to provide estimates for the general population, and including possible confounders for life events, there was an MAOA status by life events interaction (P = 0.017). There was also an interaction between MAOA status and neighbourhood deprivation (P = 0.028). Both interactions arose from a greater effect of increasing life events on negative emotionality in the MAOA-LPR low activity, compared with MAOA-LPR high activity infants. The study provides the first evidence of moderation by MAOA-LPR of the effect of the social environment in pregnancy on negative emotionality in infancy, an early risk for the development of child and adult antisocial behaviour disorders.
Resumo:
P>Aim. This paper is a report of a study on the association between sleep patterns during work nights and recovery from work among nursing workers, considering domestic work hours. Background. Several hospitals allow nursing workers to sleep during the night shift, but this is rarely evaluated from the workers` health perspective. The need for recovery from work concept can be useful for testing the impact of night work on sleep. Recovery is not a problem if workers have enough time to recover between periods of work. Therefore, domestic work would be likely to interfere in the recovery process. Methods. This cross-sectional study was carried out at three hospitals in 2005-2006, through a comprehensive questionnaire. All nursing teams engaged in assistance to patients were invited to participate. Analyses included female night workers with no incidence of insomnia. Participants (n = 396) were classified into those who did not sleep during night shifts, those who slept for up to 2 hours and those who slept for 2-3 hours. Results. Binomial logistic regression analysis showed that sleeping on the job for 2-3 hours during night shifts is related to a better recovery from work provided the workers do not undergo long domestic work hours. Conclusions. Being allowed to sleep at work during night shifts seemed to contribute to, but was not enough to guarantee, a good recovery from work in the studied population. Recommendations to deal with sleep-deprivation among night workers should consider the complexity of gender roles on the recovery process.
Resumo:
Previous studies found students who both work and attend school undergo a partial sleep deprivation that accumulates across the week. The aim of the present study was to obtain information using a questionnaire on a number of variables (e.g., socio-demographics, lifestyle, work timing, and sleep-wake habits) considered to impact on sleep duration of working (n = 51) and non-working (n = 41) high-school students aged 14-21 yrs old attending evening classes (19:00-22:30h) at a public school in the city of Sao Paulo, Brazil. Data were collected for working days and days off. Multiple linear regression analyses were performed to assess the factors associated with sleep duration on weekdays and weekends. Work, sex, age, smoking, consumption of alcohol and caffeine, and physical activity were considered control variables. Significant predictors of sleep duration were: work (p < 0.01), daily work duration (8-10h/day; p < 0.01), sex (p = 0.04), age 18-21 yrs (0.01), smoking (p = 0.02) and drinking habits (p = 0.03), irregular physical exercise (p < 0.01), ease of falling asleep (p = 0.04), and the sleep-wake cycle variables of napping (p < 0.01), nocturnal awakenings (p < 0.01), and mid-sleep regularity (p < 0.01). The results confirm the hypotheses that young students who work and attend school showed a reduction in night-time sleep duration. Sleep deprivation across the week, particularly in students working 8-10h/day, is manifested through a sleep rebound (i.e., extended sleep duration) on Saturdays. However, the different roles played by socio-demographic and lifestyle variables have proven to be factors that intervene with nocturnal sleep duration. The variables related to the sleep-wake cyclenaps and night awakeningsproved to be associated with a slight reduction in night-time sleep, while regularity in sleep and wake-up schedules was shown to be associated with more extended sleep duration, with a distinct expression along the week and the weekend. Having to attend school and work, coupled with other socio-demographic and lifestyle factors, creates an unfavorable scenario for satisfactory sleep duration.
Resumo:
Four rumen-fistulated Holstein heifers (134 +/- 1 kg initial BW) were used in a 4 x 4 Latin square design to determine the effects of delaying daily feed delivery time on intake, ruminal fermentation, behavior, and stress response. Each 3-wk experimental period was preceded by 1 wk in which all animals were fed at 0800 h. Feed bunks were cleaned at 0745 h and feed offered at 0800 h (T0, no delay), 0900 (T1), 1000 (T2), and 1100 (T3) from d1 to 21 with measurements taken during wk 1 and 3. Heifers were able to see each other at all times. Concentrate and barley straw were offered in separate compartments of the feed bunks, once daily and for ad libitum intake. Ruminal pH and saliva cortisol concentrations were measured at 0, 4, 8, and 12 h postfeeding on d 3 and 17 of each experimental period. Fecal glucocorticoid metabolites were measured on d 17. Increasing length of delay in daily feed delivery time resulted in a quadratic response in concentrate DMI (low in T1 and T2; P = 0.002), whereas straw DMI was greatest in T1 and T3 (cubic P = 0.03). Treatments affected the distribution of DMI within the day with a linear decrease observed between 0800 and 1200 h but a linear increase during nighttimes (2000 to 0800 h), whereas T1 and T2 had reduced DMI between 1200 and 1600 h (quadratic P = 0.04). Water consumption (L/d) was not affected but decreased linearly when expressed as liters per kilogram of DMI (P = 0.01). Meal length was greatest and eating rate slowest in T1 and T2 (quadratic P <= 0.001). Size of the first meal after feed delivery was reduced in T1 on d 1 (cubic P = 0.05) and decreased linearly on d 2 (P = 0.01) after change. Concentrate eating and drinking time (shortest in T1) and straw eating time (longest in T1) followed a cubic trend (P = 0.02). Time spent lying down was shortest and ruminating in standing position longest in T1 and T2. Delay of feeding time resulted in greater daily maximum salivary cortisol concentration (quadratic P = 0.04), which was greatest at 0 h in T1 and at 12 h after feeding in T2 (P < 0.05). Daily mean fecal glucocorticoid metabolites were greatest in T1 and T3 (cubic P = 0.04). Ruminal pH showed a treatment effect at wk 1 because of increased values in T1 and T3 (cubic P = 0.01). Delaying feed delivery time was not detrimental for rumen function because a stress response was triggered, which led to reduced concentrate intake, eating rate, and size of first meal, and increased straw intake. Increased salivary cortisol suggests that animal welfare is compromised.
Resumo:
Proline-specific dipeptidyl peptidases are emerging as a protease family with important roles in the regulation of signaling by peptide hormones related to energy balance. The treatment of neonatal rats with monosodium glutamate (MSG) is known to produce a selective damage on the arcuate nucleus with development of obesity. This study investigates the relationship among dipeptidyl peptidase IV (DPPIV) hydrolyzing activity, CD26 protein, fasting, and MSG model of obesity in 2 areas of the central nervous system. Dipeptidyl peptidase IV and CD26 were, respectively, evaluated by fluorometry, and enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction in soluble (SF) and membrane-bound (MF) fractions from the hypothalamus and hippocampus of MSG-treated and normal rats, submitted or not to food deprivation (FD). Dipeptidyl peptidase IV in both areas was distinguished kinetically as insensitive (DI) and sensitive (DS) to diprotin A. Compared with the controls, MSG and/or FD decreased the activity of DPPIV-DI in the SF and MF from the hypothalamus, as well as the activity of DPPIV-DS in the SF from the hypothalamus and in the MF from the hippocampus. Monosodium glutamate and/or FD increased the activity of DPPIV-DI in the MF from the hippocampus. The monoclonal protein expression of membrane CD26 by enzyme-linked immunosorbent assay decreased in the hypothalamus and increased in the hippocampus of MSG and/or FD relative to the controls. The existence of DPPIV-like activity with different sensitivities to diprotin A and the identity of insensitive with CD26 were demonstrated for the first time in the central nervous system. Data also demonstrated the involvement of DPPIV-DI/CD26 hydrolyzing activity in the energy balance probably through the regulation of neuropeptide Y and beta-endorphin levels in the hypothalamus and hippocampus. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Biometric parameters, glycemia and activity levels of plasma neutral aminopeptidase (APN) and dipeptidyl peptidase IV (DPPIV) were measured in monosodium glutamate obese and food-deprived rats (MSG-FD), to analyze the involvement of these enzymes in such situations. Plasma APN was distinguished as sensitive (PSA) (K(m) = 7.8 x 10(-5) mol/l) and predominantly insensitive (APM) (K(m) = 21.6 x 10(-5) mol/l) to puromycin, whereas DPPIV was sensitive (DPPIV-DS) (K(m) = 0.24 x 10(-5) mol/l) and predominantly insensitive (DPPIV-DI) (K(m) = 7.04 x 10(-5) mol/l) to diprotin A. Although unchanged in the MSG and food-deprived animals, APM activity levels were closely correlated with body mass, Lee index, and mass of retroperitoneal fat pad in the food deprived, but not in the MSG animals. DPPIV-DI activity levels decreased by 33% and were correlated with body mass, Lee index, and mass of periepididymal fat pad in the food-deprived MSG rats. These data suggest that APM and DPPIV-DI are respectively related to the downregulation of somatostatin in food-deprived rats, and to the recovery of energy balance in MSG obese rats during food deprivation.
Resumo:
Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (C) 2009 Wiley-Liss, Inc.
Resumo:
Purpose We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X(2)-immunoreactive (IR) neurons of the rat ileum. Methods The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X(2) receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. Results Following I/R-i, we observed a decrease in P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X(2) receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X(2) and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X(2) receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X(2) receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X(2)-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X(2)-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. Conclusions These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X(2) receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X(2)-IR enteric neurons that could result in alterations in intestinal motility.
Resumo:
Neonatal anoxia is a worldwide clinical problem that has serious and lasting consequences. The diversity of models does not allow complete reproducibility, so a standardized model is needed. In this study, we developed a rat model of neonatal anoxia that utilizes a semi-hermetic system suitable for oxygen deprivation. The validity of this model was confirmed using pulse oximetry, arterial gasometry, observation of skin color and behavior and analysis of Fos immunoreactivity in brain regions that function in respiratory control. For these experiments, 87 male albino neonate rats (Rattus norvegicus, lineage Wistar) aged approximate 30 postnatal hours were divided into anoxia and control groups. The pups were kept in an euthanasia polycarbonate chamber at 36 +/- 1 degrees C, with continuous 100% nitrogen gas flow at 3 L/min and 101.7 kPa for 25 min. The peripheral arterial oxygen saturation of the anoxia group decreased 75% from its initial value. Decreased pH and partial pressure of oxygen and increased partial pressure of carbon dioxide were observed in this group, indicating metabolic acidosis, hypoxia and hypercapnia. respectively. Analysis of neuronal activation showed Fos immunoreactivity in the solitary tract nucleus, the lateral reticular nucleus and the area postrema, confirming that those conditions activated areas related to respiratory control in the nervous system. Therefore, the proposed model of neonatal anoxia allows standardization and precise control of the anoxic condition, which should be of great value in indentifying both the mechanisms underlying neonatal anoxia and novel therapeutic strategies to combat or prevent this widespread public health problem. (C) 2011 Elsevier B.V. All rights reserved.