984 resultados para deep-water evolution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The latest Campanian-earliest Maastrichtian interval is well known as a period of intense climate cooling. This cooling caused a distinctive bipolar biogeographic distribution of calcareous nannofossil assemblages: High latitude settings were dominated by newly evolving endemic taxa, former cosmopolitan species disappeared at the same time and equatorial communities experienced an invasion of cool water taxa. The impact of this cooling on northern mid-latitude assemblages is, however, less well known. In order to overcome this gap we studied the Kronsmoor section (northwest Germany). This section provides a continuous upper Campanian - lower Maastrichtian succession with moderately to well preserved nannofossils. Uppermost Campanian assemblages are dominated by Prediscosphaera cretacea; other common taxa include Prediscosphaera stoveri, Watznaueria barnesiae and Micula staurophora. The lower Maastrichtian is characterized by lower numbers of P. cretacea and frequent Kamptnerius magnificus, Arkhangelskiella cymbiformis and Cribrosphaerella ehrenbergii. These changes reflect, in part, the Campanian-Maastrichtian boundary cooling since some successful taxa (e.g. K. magnificus) are related to cool surface waters. Other shifts in the nannofossil communities were perhaps the result of a changing nutrient regime. Stronger latitudinal gradients may have increased wind velocities and thus the eolian input of ferruginous dust required by N-fixing bacteria. The enhanced high latitude deep-water formation probably changed the bottom-water environment in disfavor of denitrificating organisms. A decline of chemical weathering and fluviatile transport may have reduced the amount of bioavailable phosphate. These processes led to an increased nitrate and a decreased phosphate content shifting the nutrient regime from nitrate towards phosphate limitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mar del Plata Canyon is located at the continental margin off northern Argentina in a key intermediate and deep-water oceanographic setting. In this region, strong contour currents shape the continental margin by eroding, transporting and depositing sediments. These currents generate various depositional and erosive features which together are described as a Contourite Depositional System (CDS). The Mar del Plata Canyon intersects the CDS, and does not have any obvious connection to the shelf or to an onshore sediment source. Here we present the sedimentary processes that act in the canyon and show that continuous Holocene sedimentation is related to intermediate-water current activity. The Holocene deposits in the canyon are strongly bioturbated and consist mainly of the terrigenous "sortable silt" fraction (10-63 µm) without primary structures, similarly to drift deposits. We propose that the Mar del Plata Canyon interacts with an intermediate-depth nepheloid layer generated by the northward-flowing Antarctic Intermediate Water (AAIW). This interaction results in rapid and continuous deposition of coarse silt sediments inside the canyon with an average sedimentation rate of 160 cm/kyr during the Holocene. We conclude that the presence of the Mar del Plata Canyon decreases the transport capacity of AAIW, in particular of its deepest portion that is associated with the nepheloid layer, which in turn generates a change in the contourite deposition pattern around the canyon. Since sedimentation processes in the Mar del Plata Canyon indicate a response to changes of AAIW contour-current strength related to Late Glacial/Holocene variability, the sediments deposited within the canyon are a great climate archive for paleoceanographic reconstructions. Moreover, an additional involvement of (hemi) pelagic sediments indicates episodic productivity events in response to changes in upper ocean circulation possibly associated with Holocene changes in intensity of El Niño/Southern Oscillation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Approximately one thousand sediment samples from ODP Site 1123 on the Chatham Rise, east of New Zealand, have been examined for inorganic elemental concentrations. ODP 1123 provides a record of sediment drift deposition under the Deep Western Boundary Current, the main inflow of deep water to the Pacific Ocean since the Early Oligocene, though a major hiatus spans the late Early Oligocene to the Early Miocene. Normalisation of the elemental concentrations by aluminium was used to allow for the effects of variable carbonate dilution. The elemental ratios were used as proxies for sediment composition and as palaeoceanographic indices. The samples were collected at a resolution designed to sample adequately any variation in elemental ratios at the scale of the Milankovitch orbital cycles. The sampled intervals span the Early Oligocene, Early Miocene, mid-Miocene and Late Pleistocene to Recent. Anomalous Si/Al, K/Al, Ti/Al values in the upper Pleistocene section, often associated with horizons of low carbonate, are attributed to tephras derived from North Island. Not all of the tephras detected geochemically had been detected visually in the cores. A total of 37 tephra events between 1.17 Ma BP and the present are recognised based on this and the shipboard investigations. The tephra events cluster at intervals of approximately 326 000 years (326 ka) perhaps due to variations in eruption frequency on North Island and/or to variations in the regional palaeowind intensity and direction. In the Late Pleistocene to Recent P/Al (inferred nutrient availability), percent calcium carbonate (%CaCO3) and Ba/Al (inferred productivity) varied regularly at a period of 40 000 years with these factors lagging minimum global ice volumes (interglacials). During the mid-Miocene CaCO3, Ba/Al, P/Al and Si/Al all gradually increased with %CaCO3 and P/Al showing regular 138 000-yr cyclicity and Ba/Al showing 44-ka cyclicity. Inferred productivity (Ba/Al) may have been rising in association with increasing nutrient availability (P/Al) at the same time as increased vigour of the Deep Western Boundary Current that was connected to a period of rapid ice-sheet growth in Antarctica. In the Early Miocene P/Al and Si/Al were much higher than subsequently and both %CaCO3 and P/Al exhibited 131 000-yr cycles. By far the highest nutrient levels and inferred productivity at this site apparently occurred during the Early Oligocene as revealed by long-term changes in P/Al and Si/Al. A progressive rise in K/Al, but stable Ti/Al from the Early Oligocene to the Recent probably indicates increased proportions of illite in the clay mineral fraction of the drift sediments caused by increased flux of debris from the Southern Alps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface sediment samples from the Norwegian-Greenland Sea were investigated to reconstruct the spatial distribution of recent carbonate dissolution on the seafloor. Additionally, carbonate dissolution records of Ocean Drilling Program sites 985 and 987 are presented to outline the development of Pleistocene carbonate preservation. Today, well-preserved carbonate tests can be observed along the inflow of warm Atlantic surface water, extending as far as into the northernmost Norwegian-Greenland Sea. Increased dissolution is indicated along the continental margins and in the deepest parts of the Greenland Basin. Factors favoring carbonate preservation were found to be supersaturation of the water column with respect to calcium carbonate, high carbonate rain and probably excess alkalinity of bottom waters supplied by the arctic river discharge. Supralysoklinal dissolution is most important for recent carbonate dissolution in the Norwegian-Greenland Sea, whereas the deepest parts of the Greenland Basin reaches the calcite saturation horizon. Pleistocene dissolution records show some prominent peaks of extreme carbonate dissolution. During the Brunhes chron, carbonate dissolution maxima can be related to meltwater pulses, which probably inhibited deep-water formation in the Norwegian-Greenland Sea during deglaciation events. Long-term severe carbonate dissolution is evident during the late Matuyama chron. This can be probably related to low carbonate rain, due to a more eastwards located East Greenland Current and the nearly absence of the not yet polar adapted Neogloboquadrina pachyderma sin. during that period. Extreme dissolution events during the late Matuyama indicate strongly reduced deep-water formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alkenone unsaturation ratios and planktonic delta18O records from sediment cores of the Alboran, Ionian and Levantine basins in the Mediterranean Sea show pronounced variations in paleo-temperatures and -salinities of surface waters over the last 16,000 years. Average sea surface temperatures (SSTs) are low during the last glacial (averages prior to 13,000 years: 11-15°C), vary rapidly at the beginning of the Holocene, and increase to 17-18°C at all sites during S1 formation (dated between 9500 and 6600 calendar years). The modern temperature gradient (2-3°C) between the Mediterranean sub-basins is maintained during formation of sapropel S1 in the Eastern Mediterranean Sea. After S1, SSTs have remained uniform in the Alboran Sea at 18°C and have fluctuated around 20°C in the Ionian and Levantine Basin sites. The delta18O of planktonic foraminifer calcite decreases by 2 per mil from the late glacial to S1 sediments in the Ionian Basin and by 2.8 per mil in the Levantine Basin. In the Alboran Sea, the decrease is 1.7 per mil. Of the 2.8 per mil decrease in the Levantine Basin, the effect of global ice volume accounts for a maximum of 1.05 per mil and the temperature increase explains only a maximum of 1.3 per mil. The remainder is attributed to salinity changes. We use the temperature and salinity estimates to calculate seawater density changes. They indicate that a reversal of water mass circulation is not a likely explanation for increased carbon burial during S1 time. Instead, it appears that intermediate and deep water formation may have shifted to the Ionian Sea approximately 2000 years before onset of S1 deposition, because surface waters were as cold, but saltier than surface water in the Levantine Basin during the Younger Dryas. Sapropel S1 began to form at the same time, when a significant density decrease also occurred in the Ionian Sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exotic limestone masses with silicified fossils, enclosed within deep-water marine siliciclastic sediments of the Early to Middle Miocene Astoria Formation, are exposed along the north shore of the Columbia River in southwestern Washington, USA. Samples from four localities were studied to clarify the origin and diagenesis of these limestone deposits. The bioturbated and reworked limestones contain a faunal assemblage resembling that of modern and Cenozoic deep-water methane-seeps. Five phases make up the paragenetic sequence: (1) micrite and microspar; (2) fibrous, banded and botryoidal aragonite cement, partially replaced by silica or recrystallized to calcite; (3) yellow calcite; (4) quartz replacing carbonate phases and quartz cement; and (5) equant calcite spar and pseudospar. Layers of pyrite frequently separate different carbonate phases and generations, indicating periods of corrosion. Negative d13Ccarbonate values as low as -37.6 per mill V-PDB reveal an uptake of methane-derived carbon. In other cases, d13Ccarbonate values as high as 7.1 per mill point to a residual, 13C-enriched carbon pool affected by methanogenesis. Lipid biomarkers include 13C-depleted, archaeal 2,6,10,15,19-pentamethylicosane (PMI; d13C: -128 per mill), crocetane and phytane, as well as various iso- and anteiso-carbon chains, most likely derived from sulphate-reducing bacteria. The biomarker inventory proves that the majority of the carbonates formed as a consequence of sulphate-dependent anaerobic oxidation of methane. Silicification of fossils and early diagenetic carbonate cements as well as the precipitation of quartz cement - also observed in other methane-seep limestones enclosed in sediments with abundant diatoms or radiolarians - is a consequence of a preceding increase of alkalinity due to anaerobic oxidation of methane, inducing the dissolution of silica skeletons. Once anaerobic oxidation of methane has ceased, the pH drops again and silica phases can precipitate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two recently drilled Caribbean sites contain expanded sedimentary records of the late Paleocene thermal maximum, a dramatic global warming event that occurred at ca. 55 Ma. The records document significant environmental changes, including deep-water oxygen deficiency and a mass extinction of deep-sea fauna, intertwined with evidence for a major episode of explosive volcanism. We postulate that this volcanism initiated a reordering of ocean circulation that resulted in rapid global warming and dramatic changes in the Earth's environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A laser ablation system connected to an inductively coupled plasma mass spectrometer was used to determine Mg/Ca ratios of the benthic foraminifera Oridorsalis umbonatus. A set of modern core top samples collected along a depth transect on the continental slope off Namibia (320-2300 m water depth; 2.9° to 10.4°C) was used to calibrate the Mg/Ca ratio against bottom water temperature. The resulting Mg/Ca-bottom water temperature relationship of O. umbonatus is described by the exponential equation Mg/Ca = 1.528*e**0.09*BWT. The temperature sensitivity of this equation is similar to previously published calibrations based on Cibicidoides species, suggesting that the Mg/Ca ratio of O. umbonatus is a valuable proxy for thermocline and deep water temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We here present a compilation of planktic and benthic 14C reservoir ages for the Last Glacial Maximum (LGM) and early deglacial from 11 key sites of global ocean circulation in the Atlantic and Indo-Pacific Ocean. The ages were obtained by 14C plateau tuning, a robust technique to derive both an absolute chronology for marine sediment records and a high-resolution record of changing reservoir/ventilation ages (Delta14C values) for surface and deep waters by comparing the suite of planktic 14C plateaus of a sediment record with that of the atmospheric 14C record (Sarnthein et al., 2007, doi:10.1029/173GM13). Results published thus far used as atmospheric 14C reference U/Th-dated corals, the Cariaco planktic record, and speleothems (Fairbanks et al., 2005, doi:10.1016/j.quascirev.2005.04.007; Hughen et al., 2006, doi:10.1016/j.quascirev.2006.03.014; Beck et al., 2001, doi:10.1023/A:1008175728826). We have now used the varve-counted atmospheric 14C record of Lake Suigetsu terrestrial macrofossils (Ramsey et al., 2012, doi:10.1126/science.1226660) to recalibrate the boundary ages and reservoir ages of the seven published records directly to an atmospheric 14C record. In addition, the results for four new cores and further planktic results for four published records are given. Main conclusions from the new compilation are: (1) The Suigetsu atmospheric 14C record on its varve counted time scale reflects all 14C plateaus, their internal structures and relative length previously identified, but implies a rise in the average 14C plateau age by 200-700 14C yr during LGM and early deglacial times. (2) Based on different 14C ages of coeval atmospheric and planktic 14C plateaus, marine surface water Delta14C may have temporarily dropped to an equivalent of ~0 yr in low-latitude lagoon waters, but reached >2500 14C yr both in stratified subpolar waters and in upwelled waters such as in the South China Sea. These values differ significantly from a widely assumed constant global planktic Delta14C value of 400 yr. (3) Suites of deglacial planktic Delta14C values are closely reproducible in 14C records measured at neighboring core sites. (4) Apparent deep-water 14C ventilation ages (equivalents of benthic Delta14C), deduced from the sum of planktic Delta14C and coeval benthic-planktic 14C differences, vary from 500 up to >5000 yr in LGM and deglacial ocean basins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is increasing evidence that the preceding Holocene climate was as unstable as the last glacial period, although variations occurred at much lower amplitudes. However, low-latitude climate records that confirm this variability are sparse. Here we present a radiocarbon-dated Holocene marine record from the tropical western Atlantic. Aragonite dissolution derived from the degree of preservation of the pteropod Limacina inflata records changes in the corrosiveness of the bottom water at the core site due to the changing influence of northern versus southern water masses. The delta18O difference between the shallow-living planktonic foraminifera Globigerinoides sacculifer and the deep-living Globorotalia tumida is used as proxy for changes in the vertical stratification of the surface water, hence the trade wind strength at this latitude. We compared our data to high-latitude records of the North Atlantic region. A good agreement is found between the aragonite dissolution and the strength in the Island-Scotland Overflow Water, which contributes significantly to the North Atlantic Deep Water. This suggests that large-scale variations in the Atlantic thermohaline circulation occurred throughout the Holocene. Concurrently, the comparison of our Delta delta18O with the GISP2 glaciochemical records points to global Holocene atmospheric reorganizations seen in both the tropics and high northern latitudes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In large areas of the world's oceans, there is a relationship between the mass flux of particulate matter and the unsupported 231Pa/230Th (xs231Pa/xs230Th) activity ratio of recent sediments. This observation forms the basis for using the xs231Pa/xs230Th ratio as a proxy for past changes in export productivity. However, a simple relationship between xs231Pa/xs 230Th ratio and particle flux requires that the water residence time in an ocean basin is far in excess of the scavenging residence time of 231Pa, and that the composition of sinking particles maintains a strong preference for the adsorption of 230Th over 231Pa with a constant 230Th/231Pa fractionation factor (F). The best correlation between xs231Pa/xs230Th ratio and mass flux is found in the Pacific Ocean. In the Atlantic, the contrast in the xs231Pa/xs230Th ratios between open ocean (low flux regions) and ocean margins (high flux regions) is much less pronounced due to the shorter residence time of deep water, resulting in less effective boundary scavenging of 231Pa. In the Southern Ocean, south of the Polar Front, there is no more a simple relationship between xs231Pa/xs230Th and particle flux. This is a result of a southward decrease in F, probably reflecting the increased opal content of sinking particles. Opal does not fractionate 231Pa and 230Th significantly. This lack of fractionation results in high xs231Pa/xs230Th ratios in opal-dominated regions, even in areas of very low particle fluxes such as the Weddell Sea. The xs231Pa/xs230Th ratio can therefore only be used as a paleoproductivity proxy if, in the time interval of interest, changes in the basin ventilation rate and differential scavenging of both radionuclides due to changes in the chemical composition of particulate matter can be excluded.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

14C concentrations, as well as 14C, hydrographic and nutrient data are reported for 5 hydrographic stations that form a transatlantic section near 40° N ("Meteor" cruise no. 23, 1971). Precision (for 14C ± 0.3 ? or better) and comparability with literature data are specified. A planned intercomparison with the US GEOSECS program within the Newfoundland Basin deep water failed because of variability of water characteristics. The observed 14C values decrease from about Delta 14C = + 80 ? at the surface to -70 ? at 2000 m depth. Deeper down, the values west of the Midatlantic Ridge remain similar, whereas those east of the ridge decrease further, to about - 110 ?. It is shown that bomb-14C is prominent down to about 1500 m depth. Beyond this depth the bomb 14C component is small and is negligible in the eastern basin below 2800 m. On the basis of the 14C-tritium correlation, the distribution of natural 14C below about 1500 m depth is derived from the observations. In the deep and bottom water east of the ridge the 14C-salinity relationship seemingly is non-linear. Contrary to expectation, the 14C concentration in the bottom water is not lower than found on an US GEOSECS station near 10° N. Apparently, lateral concentration differences in the Northeast Atlantic bottom water as well as nonlinearity of the 14C-salinity relationship at 40° N do not exceed 10 ? in Delta 14C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated five time-equivalent core sections (180-110 kyr BP) from the Balearic Sea (Menorca Rise), the easternmost Levantine Basin and southwest, south, and southeast of Crete to reconstruct spatial patterns of productivity during deposition of sapropels S5 and S6 in the Mediterranean Sea. Our indicators are Ba, total organic carbon and carbonate contents. We found no indications of Ba remobilization within the investigated core intervals, and used the accumulation rate of biogenic Ba to compute paleoproductivity. Maximum surface water productivity (up to 350 g C/m2/yr) was found during deposition of S5 (isotope stage 5e) but pronounced spatial variability is evident. Coeval sediment intervals in the Balearic Sea show very little productivity change, suggesting that chemical and biological environments in the eastern and western Mediterranean basins were decoupled in this interval. We interpret the spatial variability as the result of two different modes of nutrient delivery to the photic zone: riverderived nutrient input and shoaling of the pycnocline/nutricline to the photic zone. The productivity increase during the formation of S6 was moderate compared to S5 and had a less marked spatial variability within the study area of the eastern Mediterranean Sea. Given that S6 formed during a glacial interval, glacial boundary conditions such as high wind stress and/or cooler surface water temperatures apparently favored lateral and vertical mixing and prevented the development of the spatial gradients within the Eastern Mediterranean Sea (EMS) observed for S5. A non-sapropel sediment interval with elevated Ba content and depleted 18O/16O ratios in planktonic foraminifer calcite was detected between S6 and S5 that corresponds to the weak northern hemisphere insolation maximum at 150 kyr. At this time, productivity apparently increased up to five times over surrounding intervals, but abundant benthic fauna show that the deep water remained oxic. Following our interpretation, the interval denotes a failed sapropel, when a weaker monsoon did not force the EMS into permanent stratification. The comparison of interglacial and glacial sapropels illustrates the relevance of climatic boundary conditions in the northern catchment in determining the facies and spatial variability of sapropels within the EMS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution benthic foraminiferal and geochemical investigations were carried out across sapropels S5 and S6 from two sediment cores in the Levantine Sea to evaluate the impact of climatic and environmental changes on benthic ecosystems during times of sapropel formation. The faunal successions indicate that eutrophication and/or oxygen reduction started several thousand years prior to the onset of sapropel formation, suggesting an early response of the bathyal ecosystems to climatic changes. Severest oxygen depletions appear in the early phases of sapropel formation. The initial reduction of deep-water ventilation is caused by a warming and fresh water-induced stratification of Eastern Mediterranean surface waters. During the late phase of S5 formation improved oxygenation is restricted to middle bathyal ecosystems, indicating that at least some formation of subsurface water took place. During S6 formation oxygen depletions and eutrophication were less severe and more variable than during S5 formation. Estimated oxygen contents were low dysoxic at middle bathyal to anoxic at lower bathyal depths during the early phase of S6 formation but never dropped to anoxic values in its late phase. The high benthic ecosystem variability during S6 formation suggests that water column stratification at deep-water formation sites was in a very unstable mode and susceptible to minor temperature fluctuations at a millennial time-scale.