926 resultados para curcubita maxima
Resumo:
The first step in gibberellin biosynthesis is catalyzed by copalyl diphosphate synthase (CPS) and ent-kaurene synthase. We have cloned from pumpkin (Cucurbita maxima L.) two cDNAs, CmCPS1 and CmCPS2, that each encode a CPS. Both recombinant fusion CmCPS proteins were active in vitro. CPS are translocated into plastids and processed by cleavage of transit peptides. For CmCPS1 and CmCPS2, the putative transit peptides cannot exceed the first 99 and 107 amino acids, respectively, because longer N-terminal deletions abolished activity. Levels of both CmCPS transcripts were strictly regulated in an organ-specific and developmental manner. Both transcripts were almost undetectable in leaves and were abundant in petioles. CmCPS1 transcript levels were high in young cotyledons and low in roots. In contrast, CmCPS2 transcripts were undetectable in cotyledons but present at significant levels in roots. In hypocotyls, apices, and petioles, CmCPS1 transcript levels decreased with age much more rapidly than those of CmCPS2. We speculate that CmCPS1 expression is correlated with the early stages of organ development, whereas CmCPS2 expression is correlated with subsequent growth. In contrast, C. maxima ent-kaurene synthase transcripts were detected in every organ at almost constant levels. Thus, ent-kaurene biosynthesis may be regulated through control of CPS expression.
Resumo:
The level of mRNAs derived from the plastid-encoded psbD light-responsive promoter (LRP) is controlled by a circadian clock(s) in wheat (Triticum aestivum). The circadian oscillations in the psbD LRP mRNA level persisted for at least three cycles in continuous light and for one cycle in continuous dark, with maxima in subjective morning and minima in subjective early night. In vitro transcription in chloroplast extracts revealed that the circadian cycles in the psbD LRP mRNA level were dominantly attributed to the circadian-regulated transcription of the psbD LRP. The effects of various mutations introduced into the promoter region on the psbD LRP activity in vitro suggest the existence of two positive elements located between −54 and −36, which generally enhance the transcription activity, and an anomalous core promoter structure lacking the functional “−35” element, which plays a crucial role in the circadian fluctuation and light dependency of psbD LRP transcription activity.
Resumo:
The ga2 mutant of Arabidopsis thaliana is a gibberellin-deficient dwarf. Previous biochemical studies have suggested that the ga2 mutant is impaired in the conversion of copalyl diphosphate to ent-kaurene, which is catalyzed by ent-kaurene synthase (KS). Overexpression of the previously isolated KS cDNA from pumpkin (Cucurbita maxima) (CmKS) in the ga2 mutant was able to complement the mutant phenotype. A genomic clone coding for KS, AtKS, was isolated from A. thaliana using CmKS cDNA as a heterologous probe. The corresponding A. thaliana cDNA was isolated and expressed in Escherichia coli as a fusion protein. The fusion protein showed enzymatic activity that converted [3H]copalyl diphosphate to [3H]ent-kaurene. The recombinant AtKS protein derived from the ga2–1 mutant is truncated by 14 kD at the C-terminal end and does not contain significant KS activity in vitro. Sequence analysis revealed that a C-2099 to T base substitution, which converts Gln-678 codon to a stop codon, is present in the AtKS cDNA from the ga2–1 mutant. Taken together, our results show that the GA2 locus encodes KS.
Resumo:
To clarify the molecular basis of the photoperiodic induction of flowering in the short-day plant Pharbitis nil cv Violet, we examined changes in the level of mRNA in cotyledons during the flower-inductive photoperiod using the technique of differential display by the polymerase chain reaction. A transcript that accumulated during the inductive dark period was identified and a cDNA corresponding to the transcript, designated PnC401 (P. nil C401), was isolated. RNA-blot hybridization verified that levels of PnC401 mRNA fluctuated with a circadian rhythm, with maxima between 12 and 16 h after the beginning of the dark period) and minima of approximately 0. This oscillation continued even during an extended dark period but was damped under continuous light. Accumulation of PnC401 mRNA was reduced by a brief exposure to red light at the 8th h of the dark period (night-break treatment) or by exposure to far-red light at the end of the light period (end-of-day far-red treatment). These results suggest that fluctuations in levels of PnC401 mRNA are regulated by phytochrome(s) and a circadian clock and that they are associated with photoperiodic events that include induction of flowering.
Resumo:
The ultrastructural features of the sieve element/companion cell complexes were screened in the stem phloem of two symplasmically loading (squash, [Cucurbita maxima L.] and Lythrum salicaria L.) and two apoplasmically loading (broad bean [Vicia faba L.] and Zinnia elegans L.) species. The distinct ultrastructural differences between the companion cells in the collection phloem of symplasmically and apoplasmically phloem-loading species continue to exist in the transport phloem. Plasmodesmograms of the stem phloem showed a universal symplasmic constriction at the interface between the sieve element/companion cell complex and the phloem parenchyma cells. This contrasts with the huge variation in symplasmic continuity between companion cells and adjoining cells in the collection phloem of symplasmically and apoplasmically loading species. Further, the ultrastructure of the companion cells in the transport phloem faintly reflected the features of the companion cells in the loading zone of the transport phloem. The companion cells of squash contained numerous small vacuoles (or vesicles), and those of L. salicaria contained a limited number of vacuoles. The companion cells of broad bean and Z. elegans possessed small wall protrusions. Implications of the present findings for carbohydrate processing in intact plants are discussed.
Resumo:
The temperature coefficient of equilibrium isotope fractionation in the heavy elements is shown to be larger at high temperatures than that expected from the well-studied vibrational isotope effects. The difference in the isotopic behavior of the heavy elements as compared with the light elements is due to the large nuclear isotope field shifts in the heavy elements. The field shifts introduce new mechanisms for maxima, minima, crossovers, and large mass-independent isotope effects in the isotope chemistry of the heavy elements. The generalizations are illustrated by the temperature dependence of the isotopic fractionation in the redox reaction between U(VI) and U(IV) ions.
Resumo:
Carcinogen-DNA adduct measurements may become useful biomarkers of effective dose and/or early effect. However, validation of this biomarker is required at several levels to ensure that human exposure and response are accurately reflected. Important in this regard is an understanding of the relative biomarker levels in target and nontarget organs and the response of the biomarker under the chronic, low-dose conditions to which humans are exposed. We studied the differences between single and chronic topical application of benzo[a]pyrene (BAP) on the accumulation and removal of BAP-DNA adducts in skin, lung, and liver. Animals were treated with BAP at 10, 25, or 50 nMol topically once or twice per week for as long as 15 weeks. Animals were sacrificed either at 24, 48, or 72 hr after the last dose at 1 and 30 treatments, and after 24 hr for all other treatment groups. Adduct levels increased with increasing dose, but the slope of the dose-response was different in each organ. At low doses, accumulation was linear in skin and lung, but at high doses the adduct levels in the lung increased dramatically at the same time when the levels in the skin reached apparent steady state. In the liver adduct, levels were lower than in target tissues and apparent steady-state adduct levels were reached rapidly, the maxima being independent of dose, suggesting that activating metabolism was saturated in this organ. Removal of adducts from skin, the target organ, was more rapid following single treatment than with chronic exposure. This finding is consistent with earlier data, indicating that some areas of the genome are more resistant to repair. Thus, repeated exposure and repair cycles would be more likely to cause an increase in the proportion of carcinogen-DNA adducts in repair-resistant areas of the genome. These findings indicate that single-dose experiments may underestimate the potential for carcinogenicity for compounds that follow this pattern.
Resumo:
Foldons, which are kinetically competent, quasi-independently folding units of a protein, may be defined using energy landscape analysis. Foldons can be identified by maxima in a scan of the ratio of a contiguous segment's energetic stability gap to the energy variance of that segment's molten globule states, reflecting the requirement of minimal frustration. The predicted foldons are compared with the exons and structural modules for 16 of the 30 proteins studied. Statistical analysis indicates a strong correlation between the energetically determined foldons and Go's geometrically defined structural modules, but there are marked sequence-dependent effects. There is only a weak correlation of foldons to exons. For gammaII-crystallin, myoglobin, barnase, alpha-lactalbumin, and cytochrome c the foldons and some noncontiguous clusters of foldons compare well with intermediates observed in experiment.
Resumo:
The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.
Resumo:
Fluorescent dye-labeled DNA primers have been developed that exploit fluorescence energy transfer (ET) to optimize the absorption and emission properties of the label. These primers carry a fluorescein derivative at the 5' end as a common donor and other fluorescein and rhodamine derivatives attached to a modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine in the primer sequence allowed generation of four primers, all having strong absorption at a common excitation wavelength (488 nm) and fluorescence emission maxima of 525, 555, 580, and 605 nm. The ET efficiency of these primers ranges from 65% to 97%, and they exhibit similar electrophoretic mobilities by gel electrophoresis. With argon-ion laser excitation, the fluorescence of the ET primers and of the DNA sequencing fragments generated with ET primers is 2- to 6-fold greater than that of the corresponding primers or fragments labeled with single dyes. The higher fluorescence intensity of the ET primers allows DNA sequencing with one-fourth of the DNA template typically required when using T7 DNA polymerase. With single-stranded M13mp18 DNA as the template, a typical sequencing reaction with ET primers on a commercial sequencer provided DNA sequences with 99.8% accuracy in the first 500 bases. ET primers should be generally useful in the development of other multiplex DNA sequencing and analysis methods.
Resumo:
In the facultative anaerobe Escherichia coli, the transcription factor FNR (fumarate nitrate reduction) regulates gene expression in response to oxygen deprivation. To investigate how the activity of FNR is regulated by oxygen availability, two mutant proteins, DA154 and LH28-DA154, which have enhanced in vivo activity in the presence of oxygen, were purified and compared. Unlike other previously examined FNR preparations, the absorption spectrum of LH28-DA154 had two maxima at 324 nm and 419 nm, typical of iron-sulfur (Fe-S)-containing proteins. Consistent with these data, metal analysis showed that only the LH28-DA154 protein contained a significant amount of iron and acid-labile sulfide, and, by low temperature EPR spectroscopy, a signal typical of a [3Fe-4S]+ cluster was detected. The LH28-DA154 protein that contained the Fe-S cluster also contained a higher proportion of dimers and had a 3- to 4-fold higher apparent affinity for the target DNA than the DA154 protein. In agreement with this, we found that when the LH28-DA154 protein was treated with an iron chelator (alpha,alpha'-dipyridyl), it lost its characteristic absorption and the apparent affinity for DNA was reduced 6-fold. However, increased DNA binding and the characteristic absorption spectrum could be restored by in vitro reconstitution of the Fe-S center. DNA binding of the LH28-DA154 protein was also affected by the redox state of the Fe-S center, since protein exposed to oxygen bound 1/10th as much DNA as the protein reduced anaerobically with dithionite. The observation that DNA binding is enhanced when the Fe-S center is reduced indicates that the redox state of the Fe-S center affects the DNA-binding activity of this protein and suggests a possible mechanism for regulation of the wild-type protein.
Resumo:
Foi preparada uma série de quatro betalaínas com o objetivo de determinar o efeito da metilação do nitrogênio imínico e da presença de uma hidroxila fenólica na posição 3 do anel aromático sobre a estabilidade e propriedades antirradicalares, fotofísicas e redox desta classe de pigmentos vegetais. O estudo destes compostos, chamados de m-betalainofenol, N-metil-m-betalainofenol, fenilbetalaína e N-metil-fenilbetalaína, revelou que os derivados metilados apresentam um deslocamento hipsocrômico sutil dos máximos de absorção e fluorescência em relação aos compostos não metilados. Os deslocamentos de Stokes são maiores em cerca de 4 kJ mol-1 para os derivados metilados e os rendimentos quânticos de fluorescência cerca de três vezes menores. A hidrólise destas betalaínas foi investigada na faixa de pH entre 3 e 7. Todas as betalaínas são mais persistentes em pH = 6 e a metilação da porção imínica aumenta significativamente a estabilidade da betalaína em meio aquoso. A presença da porção fenólica, em comparação a um grupo fenila, não afeta as propriedades fotofísicas dos compostos e tem um efeito menos pronunciado do que o da metilação sobre a estabilidade destes em meio aquoso. O comportamento eletroquímico dos compostos foi estudado por voltametria cíclica, nas mesmas condições de pH. A N-metilação foi novamente mais significativa do que a hidroxilação, provocando aumento de até 200 mV no potencial de pico anódico. O aumento do pH diminuiu o potencial de pico anódico dos quatro compostos, com uma razão entre prótons e elétrons igual a 1 para a maioria dos picos. A capacidade antirradicalar foi quantificada pelo ensaio colorimétrico TEAC baseado na redução de ABTS•+. Os dois derivados N-metilados apresentaram, em média, o mesmo valor de TEAC, apesar de um ser fenólico e o outro não. Já entre os não metilados, que têm TEAC de 2 a 3 unidades inferior à dos outros, a presença do fenol provoca elevação da capacidade antirradicalar. Os resultados sugerem a participação dos elétrons do anel 1,2,3,4-tetraidropiridínico, acoplados ao próton do nitrogênio imínico na ação antirradicalar de betalaínas.
Resumo:
Neste trabalho foi realizado o estudo do comportamento fotoquímico e fotofísico de complexos mononucleares de rênio do tipo fac-[Re(CO)3(N N)(L)]+(N N = 1,10-fenantrolina, phen, dipirido[3,2-a:2,3-c]fenazina, dppz, L= trans-1,2bis(4-piridil)etileno, trans-bpe, trans-4-estirilpiridina. trans-stpy) e dos complexos binucleares [(CO)3(phen)Re(trans-bpe)Re(phen)(CO)3]2+, [(CO)3(phen)Re(trans-bpe)Fe(CN5]2- e [(phen)(CO)3Re(trans-bpe)Os(terpy)(bpy)]3+. O enfoque principal deste trabalho é a investigação das propriedades fotoquímicas dos complexos fac-[ Re(CO)3(phen)(trans-bpe)]+, fac-[Re(CO)3(phen)(trans-stpy)]+ fac-[Re(CO)3(dppz)(trans-bpe)+ e [(CO)3(phen)Re(trans-bpe)Re(phen)(CO)3]2+. Observou-se que os compostos em solução de acetonitrila, sob irradiação a 313, 334 ou 365 nm, apresentam variação espectral com definição de pontos isosbésticos, resultante do processo de fotoisomerização trans→cis do ligante coordenado trans-piridil etileno. Os rendimentos quânticos, Φ, da reação de fotoisomerização foram calculados com base no decaimento espectral das bandas de absorção das transições eletrônicas. Os valores médios determinados para a fotoisomeriação dos complexos em solução de CH3CN variam de 0,15 - 0,39 sob excitação a 313 nm e de 0,12 - 0,33 sob excitação a 365 nm. As reações de fotoisomerização foram monitoradas também por medidas de emissão e por RMN de 1H. Observou-se um aumento da intensidade de luminescência com o tempo de irradiação dos complexos, consistente com o estado emissivo 3MLCT dπ[(Re)→π*(α-diimina). Após irradiação, as reações de fotoisomerização dos complexos foram monitoradas por RMN de 1H. Os sinais de prótons do isômero trans tiveram um decréscimo gradual, enquanto que a intensidade dos sinais referentes aos prótons da espécie cis aumentaram. Os rendimentos quânticos para o processo de fotoisomerização dos complexos foram calculados através da integração das áreas dos sinais de prótons. Os valores obtidos foram maiores, pelo menos o dobro, que aqueles valores obtidos via espectroscopia UV-Vis. O comportamento fotoquímico dos complexos incorporados em polimetacrilato de metila, PMMA, foi também investigado. A fotólise cios complexos em filmes de PMMA conduz à variação espectral, de absorção e emissão, similar àquela observada em solução de acetonitrila, atribuícla ao processo de fotoisomerização trans → cis do ligante coordenado. Este estudo mostra que a fotoisomerização do ligante coordenado trans-piridil etileno pode ser promovida também em meio rígido. Essa característica. típica de um dispositivo molecular, pode ser convenientemente explorada no desenvolvimento de fotossensores. As medidas de TRIR mostram que o estado excitado de menor energia para o fac-[Re(CO)3(phen)(trans-bpe)+ é o 3ππ*. Para o fac-[Re(CO)3(phen)(cis-bpe)]+ a ordem dos estados excitados aparecem invertidas com o 3MLCT <3ππ*, evidenciado pela emissão do complexo cis à temperatura ambiente. Nas espécies binucleares, [(phen) Re(CO)3(trans-bpe)Os(terpy)(bpy)]3+ e [(CO)3(phen)Re(trans-bpe)Fe(CN)5]2-, a fotoisomerização trans → cis do ligante coordenado trans-bpe, característica da subunidade fac-[Re(CO)3(phen)(trans-bpe)]+, é inibida pela competição de transferência de energia intramolecular. Em meio rígido, em PMMA ou em EPA a 77 K, os máximos de emissão dos complexos fac-[Re(CO)3(phen)(cis-bpe)]+, fac-[Re(CO)3(phen)(cis-stpy)r e [(CO)3(phen)Re(cis-bpe)Re(phen)(CO)3]2+ sofrem um deslocamento hipsocrômico com o aumento da rigidez do meio. As mudanças nas propriedades emissivas, em termos de energia e tempo de vida do estado excitado, são discutidas baseadas no efeito rigidocrômico luminescente. O trabalho mostra uma forma interessante de fotos sensibilizar um substrato orgâmco usando o fato de que a coordenação estende a absorção do ligante a uma região de comprimento de onda maior e promove a fotoisomerização assistida por complexos metálicos em energias menores.
Resumo:
Los sedimentos continentales (Plioceno-Cuaternario) que afloran en el sector central de la Cuenca de Guadix (Sur de España) muestran una ciclicidad de 100 ka consistente en la alternancia de depósitos de abanicos aluviales y sedimentos fluvio-lacustres. Durante el Plioceno y el Pleistoceno la Cuenca de Guadix era endorreica, y se caracterizaba por la existencia de un sistema axial fluvial y una orla marginal de abanicos aluviales transversales. En la zona de estudio, estos sistemas estaban relacionados lateralmente, ocupando de forma alterna el valle axial en el sector central de la Cuenca de Guadix. La edad estimada para la alternancia, ca. 100 ka, cae en la banda de excentricidad de alta frecuencia de Milankovitch. Estas fases podrían interpretarse como el resultado de máximos de excentricidad (inviernos más largos y fríos, con mayor volumen de precipitaciones que favorecerían las progradaciones de los abanicos) o de excentricidad mínima (períodos más secos y fríos, con una cubierta vegetal más escasa en las áreas fuente y, por tanto, un mayor aporte de sedimento por precipitaciones muy concentradas en el tiempo al sistema aluvial). Se muestra cómo los datos paleomagnéticos no son lo suficientemente precisos para proporcionar una buena correlación de las fases de progradación con la curva de excentricidad de Laskar et al. (2004), por lo que se pone en duda su precisión a la hora de determinar el significado climático de la ciclicidad.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Colonia Agrippina antiquissima, maxima ac celeberrima libera imperii civitas et emporium florentissimum autore Matth�o Seutter Sac. C�s. et Reg. Cathol May Geogr. August = C�lln am Rhein eine uhralte sehr grose Hochber�hmte freye Reichs-und florisante Handel-Statt versertigt und heraus gegeben von Matth�us Seutter, Kaysrl. Georg: in Augspurg. It was published by Matt�o Seutter in 1740. Scale [ca. 1:8,200]. Covers Cologne, Germany. Map in Latin and German.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Deutsches Hauptdreiecksnetz (DHDN) 3-degree Gauss-Kruger Zone 2 coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map.This map shows features such as roads, drainage, built-up areas and selected buildings, fortification, ground cover, and more. Relief shown pictorially. Includes index, text and view below map: Agrippina C�lln am Rhein. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.