989 resultados para crop characteristics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater constitutes a vital natural resource for sustaining India’s agricultural economy and meeting the country’s social, ecological and environmental goals. It is a unique resource, widely available, providing security against droughts and yet it is closely linked to surface-water resources and the hydrological cycle. Its availability depends on geo-hydrological conditions and characteristics of aquifers, from deep to alluvium, sediment crystalline rocks to basalt formations; and agro-climate from humid to subhumid and semi-arid to arid. Its reliable supply, uniform quality and temperature, relative turbidity, pollution-safe, minimal evaporation losses, and low cost of development are attributes making groundwater more attractive compared to other resources. It plays a key role in the provision of safe drinking water to rural populations. For example, already almost 80% of domestic water use in rural areas in India is groundwater-supplied, and much of it is being supplied to farms, villages and small towns. Inadequate control of the use of groundwater, indiscriminate application of agrochemicals and unrestrained pollution of the rural environment by other human activities make groundwater usage unsustainable, necessitating proper management in the face of the twin demand for water of good quality for domestic supply and adequate supply for irrigation, ensuring equity, efficiency and sustainability of the resource. Groundwater irrigation has overtaken surface irrigation in the early 1980s, supported by well energization. It is estimated that there are about 24 million energised wells and tube wells now and it is driven by demand rather than availability, evident through the greater occurrence of wells in districts with high population densities. Apart from aquifer characteristics, land fragmentation and landholding size are the factors that decide the density of wells. The ‘rise and fall’ of local economies dependent on groundwater can be summarized as: the green revolution of 1980s, groundwaterbased agrarian boom, early symptoms of groundwater overdraft, and decline of the groundwater socio-ecology. The social characteristics and policy interventions typical of each stage provide a fascinating insight into the human-resource dynamics. This book is a compilation of nine research papers discussing various aspects of groundwater management. It attempts to integrate knowledge about the physical system, the socio-economic system, the institutional set-up and the policy environment to come out with a more realistic analysis of the situation with regard to the nature, characteristics and intensity of resource use, the size of the economy the use generates, and the negative socioeconomic consequences. Complex variables addressed in this regard focusing on northern Gujarat are the stock of groundwater available in the region, its hydrodynamics, its net outflows against inflows, the economics of its intensive use (particularly irrigation in semi-arid and arid regions), its criticality in the regional hydroecological regime, ethical aspects and social aspects of its use. The first chapter by Dinesh Kumar and Singh, dwells on complex groundwater socio-ecology of India, while emphasizing the need for policy measures to address indiscriminate over-exploitation of dwindling resources. The chapter also explores the nature of groundwater economy and the role of electricity prices on it. The next chapter on groundwater issue in north Gujarat provides a description of groundwater resource characteristics followed by a detailed analysis of the groundwater depletion and quality deterioration problems in the region and their undesirable consequences on the economy, ecosystem health and the society. Considering water-buyers and wellowning farmers individually, a methodology for economic valuation of groundwater in regions where its primary usage is in agriculture, and as assessment of the groundwater economy based on case studies from north Gujarat is presented in the fourth chapter. The next chapter focuses on the extent of dependency of milk production on groundwater, which includes the water embedded in green and dry fodder and animal feed. The study made a realistic estimate of irrigation water productivity in terms of the physics and economics of milk production. The sixth chapter analyses the extent of reduction in water usage, increase in yield and overall increase in physical productivity of alfalfa with the use of the drip irrigation system. The chapter also provides a detailed synthesis of the costs and benefits associated with the use of drip irrigation systems. A linear programmingbased optimization model with the objective to minimize groundwater use taking into account the interaction between two distinct components – farming and dairying under the constraints of food security and income stability for different scenarios, including shift in cropping pattern, introduction of water-efficient crops, water- saving technologies in addition to the ‘business as usual’ scenario is presented in the seventh chapter. The results show that sustaining dairy production in the region with reduced groundwater draft requires crop shifts and adoption of water-saving technologies. The eighth chapter provides evidences to prove that the presence of adequate economic incentive would encourage farmers to adopt water-saving irrigation devices, based on the findings of market research with reference to the level of awareness among farmers of technologies and the factors that decide the adoption of water-saving technologies. However, now the marginal cost of using electricity for agricultural pumping is almost zero. The economic incentives are strong and visible only when the farmers are either water-buyers or have to manage irrigation with limited water from tube-well partnerships. The ninth chapter explores the socio-economic viability of increasing the power tariff and inducing groundwater rationing as a tool for managing energy and groundwater demand, considering the current estimate of the country’s annual economic loss of Rs 320 billion towards electricity subsidy in the farm sector. The tenth chapter suggests private tradable property rights and development of water markets as the institutional tool for achieving equity, efficiency and sustainability of groundwater use. It identifies the externalities for local groundwater management and emphasizes the need for managing groundwater by local user groups, supported by a thorough analysis of groundwater socio-ecology in India. An institutional framework for managing the resource based on participatory approach that is capable of internalizing the externalities, comprising implementation of institutional and technical alternatives for resource management is also presented. Major findings of the analyses and key arguments in each chapter are summarized in the concluding chapter. Case studies of the social and economic benefits of groundwater use, where that use could be described as unsustainable, are interesting. The benefits of groundwater use are outlined and described with examples of social and economic impacts of groundwater and the negative aspects of groundwater development with the compilation of environmental problems based on up-to-date research results. This publication with a well-edited compilation of case studies is informative and constitutes a useful publication for students and professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. The experiments were performed as per the ASTM D 149 standard on samples of thickness 0.5 mm, 1 mm and 3 mm in order to study the effect of thickness on the ac breakdown strength of epoxy nanocomposites. In the case of epoxy alumina nanocomposites it was observed that the ac breakdown strength was marginally lower for 0.1 wt% and 1 wt% filler loadings and then increased at 5 wt% filler loading as compared to the unfilled epoxy. The Weibull shape parameter (beta) increased with the addition of nanoparticles to epoxy as well as with the increasing sample thickness for all the filler loadings considered. DSC analysis was done to study the material properties at the filler resin interface in order to understand the effect of the filler loading and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites. It was also observed that the decrease in ac electric breakdown strength with an increase in sample thickness follows an inverse power-law dependence. In addition, the ac breakdown strength of epoxy silica nanocomposites have also been studied in order to understand the influence of the filler type on the breakdown strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dry sliding wear and friction behaviour of A356 Al alloy and its composites containing 10 and 20 vol.% SiC(P) have been studied using pin-on-disc set up. In these tests, A356 Al alloy and its composites are used as disc whereas brake pad was used in the form of pins. Wear tests were carried out at a load of 192 N and the sliding speed was varied from 1 to 5 m/s. Tests were done for a sliding distance of 15 km. The effects of sliding velocity on the wear rate, coefficient of friction and nature of tribolayers formed on discs have been studied. Wear rates of composites as calculated by weight loss method, found to be negative at sliding speed of more than 2 m/s. Worn surfaces of pins and discs have been analyzed using scanning electron microscope. SEM and EDAX analysis of worn surfaces of composite discs showed formation of tribolayers, consisting of mixture of oxides of Al, Si, Cu, Ca, Ba, Mg, and Fe. In these layers, copper and barium content found to be increase with sliding speed in the case of composites. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contemporary methods for source characterization rely mainly on experiments. These methods produce inaccurate results in the low‐frequency band, where the characteristics are all the more important. Moreover, the experimental methods cannot be used at the design stage. Hence, a numerical technique to obtain the source characteristics is desirable. In this paper, the pressure‐time history and the mass‐flux‐time history obtained by means of the time‐domain analysis have been used, along with the two‐load method to compute the source characteristics. Two new computational methods for obtaining the source characteristics have been described. These are much simpler, and computationally more economical than the complete time‐domain simulation, which makes use of the method of characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instants at which significant excitation of vocal tract take place during voicing are referred to as epochs. Epochs and strengths of excitation pulses at epochs are useful in characterizing voice source. Epoch filtering technique proposed by the authors determine epochs from speech waveform. In this paper we propose zero-phase inverse filtering to obtain strengths of excitation pulses at epochs. Zero-phase inverse filter compensates the gross spectral envelope of short-time spectrum of speech without affecting phase characteristics. Linear prediction analysis is used to realize the zero-phase inverse filter. Source characteristics that can be derived from speech using this technique are illustrated with examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the effect of surface treatments on the dynamic conductance curves (G=dI/dV‐V) of Au‐Bi2Sr2CaCu2O8+δ (single crystal) point contact junctions of variable junction conductances (100 mS≳G≳100 μS). We find that if the crystal surface is cleaved freshly just prior to making contacts, all irreproducible sharp multiple features often observed in tunneling data of Bi(2212) oxide superconductors disappear. If the cleaved crystal surfaces are left under ambient conditions for a few days and the tunneling experiments are repeated, these multiple features reappear. We also find that if the current in the junction is made to pass predominantly through the bulk (and not along the surface), gap features are sharper. The observed conductance curves are fitted to a modified model [G. E. Blonder et al., Phys. Rev. B 25, 4515 (1982)] and estimated gap values are Δ≂28 to 30 meV corresponding to the ratio 2Δ/kBTc ≂ 7.5 with lifetime broadening Γ/Δ≂0.2. We conclude that the sharp multiple features observed in Bi(2212) tunneling curves has no intrinsic origin in the bulk and they arise from the surface only.