926 resultados para crack tip
Resumo:
[ES]El grupo de investigación TIP, de la Universidad de Las Palmas de Gran Canaria ha desarrollado un novedoso conjugador de verbos españoles que muestra la conjugación simple y compuesta. El Conjugador TIP no se ha basado en reglas sino que usa una base de datos de más de 14000 verbos previamente conjugados y verificados, como novedad incluye el mostrar de cada forma verbal su frecuencia de aparición en el Corpus de Referencia del Español Actual (CREA) y las formas con pronombres enclíticos que aparecen en dicho corpus.
Resumo:
[EN] FreeConj-TIP es programa desarrollado en el lenguaje de programación C++, bajo licencia GNU General Public, que realiza la conjugación de verbos del español. FreeConj-TIP resuelve la conjugación aplicando reglas elementales de la ortografía española y de conjugación para verbos con una cierta irregularidad en un 97,42% de un total de 14613 verbos, y el 2,57%, restante, correspondiente a verbos muy irregulares, se resuelve en base a datos. El objetivo principal del proyecto ha sido el de construir un conjugador verbal con una implementación sencilla, pero sin que por ello existan verbos que no puedan ser conjugados de acuerdo a todos los modelos de conjugación que les resulten aplicables.
Resumo:
La tesi tratta l'analisi della rugosità della superficie di frattura di un materiale policristallino portato a rottura secondo il modo I. Il continuo viene discretizzato con la tassellazione di Voronoi e la duale triangolazione di Delaunay, da cui si ottiene un traliccio equivalente ovvero il modello del problema. Viene poi effettuata un'analisi elastica incrementale che porta, ad ogni passo, al raggiungimento della soglia di rottura per un elemento del traliccio, delineando così il profilo di rottura. La rugosità del profilo di rottura viene stimata attraverso il calcolo dell'esponente di Hurst, ottenuto dallo studio della funzione di correlazione delle altezze.
Resumo:
Compared with other mature engineering disciplines, fracture mechanics of concrete is still a developing field and very important for structures like bridges subject to dynamic loading. An historical point of view of what done in the field is provided and then the project is presented. The project presents an application of the Digital Image Correlation (DIC) technique for the detection of cracks at the surface of concrete prisms (500mmx100mmx100mm) subject to flexural loading conditions (Four Point Bending test). The technique provide displacement measurements of the region of interest and from this displacement field information about crack mouth opening (CMOD) are obtained and related to the applied load. The evolution of the fracture process is shown through graphs and graphical maps of the displacement at some step of the loading process. The study shows that it is possible with the DIC system to detect the appearance and evolution of cracks, even before the cracks become visually detectable.
Resumo:
Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.
Resumo:
On the basis of well-known literature, an analytical tool named LEAF (Linear Elastic Analysis of Fracture) was developed to predict the Damage Tolerance (DT) proprieties of aeronautical stiffened panels. The tool is based on the linear elastic fracture mechanics and the displacement compatibility method. By means of LEAF, an extensive parametric analysis of stiffened panels, representative of typical aeronautical constructions, was performed to provide meaningful design guidelines. The effects of riveted, integral and adhesively bonded stringers on the fatigue crack propagation performances of stiffened panels were investigated, as well as the crack retarder contribution using metallic straps (named doublers) bonded in the middle of the stringers bays. The effect of both perfectly bonded and partially debonded doublers was investigated as well. Adhesively bonded stiffeners showed the best DT properties in comparison with riveted and integral ones. A great reduction of the skin crack growth propagation rate can be achieved with the adoption of additional doublers bonded between the stringers.
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses up to several mm underneath the surface of metal components in order to improve the detrimental effects of crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior of thin Aluminum specimens with one or more LSP stripes defining a compressive residual stress area. The LSP treatment has been applied as crack retardation stripes perpendicular to the crack growing direction, with the objective of slowing down the crack when approaching the LSP patterns. Different finite element approaches have been implemented to predict the residual stress field left by the laser treatment, mostly by means of the commercial software Abaqus/Explicit. The Afgrow software has been used to predict the crack growth behavior of the component following the laser peening treatment and to detect the improvement in fatigue life comparing to the specimen baseline. Furthermore, an analytical model has been implemented on the Matlab software to make more accurate predictions on fatigue life of the treated components. An educational internship at the Research and Technologies Germany- Hamburg department of Airbus helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: -To up to date Literature Survey related to laser shock peening in metallic structures -To validate the FE models developed against experimental measurements at coupon level -To develop design of crack growth slow down in centered and edge cracked tension specimens based on residual stress engineering approach using laser peened patterns transversal to the crack path -To predict crack growth behavior of thin aluminum panels -To validate numerical and analytical results by means of experimental tests.
Resumo:
By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.
Resumo:
OBJECTIVE: To describe the use of an endobronchial blocker (EBB) and to perform selective ventilation during pulmonary lobe resection via thoracotomy in a dog and report its accidental stapling in the resection site. STUDY DESIGN: Clinical case report. ANIMAL: One female dog with a suspected abscess or neoplasia of the right caudal pulmonary lobe. METHODS: One-lung ventilation was performed using a wire-guided EBB to seal the contaminated parenchyma and facilitate surgical access. The affected lung parenchyma was resected and the resection site was closed with staples. RESULTS: Lobar resection was performed successfully, but the loop of the EBB guide wire was inadvertently entrapped in the staple line of the lobectomy. Staples were removed to release the wire loop, and the resulting air leak caused loss of ventilation control until the parenchyma was re-sealed. CONCLUSIONS: We recommend removing the wire guide associate with the EBB after successful lung separation to avoid accidents that could have life-threatening consequences if not recognized. CLINICAL RELEVANCE: One-lung ventilation is useful to isolate healthy parenchyma from diseased parenchyma during lobectomy. Anesthesiologists and surgeons need to be aware of the potential complications associated with use of EBB.