980 resultados para copper ion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and charge density distribution studies have been carried out on a single crystal data of an ammonium borate, [C(10)H(26)N(4)][B(5)O(6)(OH)(4)](2), synthesized by solvothermal method. Further, the experimentally observed geometry is used for the theoretical charge density calculations using the B3LYP/6-31G** level of theory, and the results are compared with the experimental values. Topological analysis of charge density based on the Atoms in Molecules approach for B-O bonds exhibit mixed covalent/ionic character. Detailed analysis of the hydrogen bonds in the crystal structure in the ammonium borate provides insights into the understanding of the reaction pathways that net atomic charges and electrostatic potential isosurfaces also give additional such systems. could result in the formation of borate minerals. The input to evaluate chemical and physical properties in such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the isothermal, magnetic field (H‖c) dependent rf power P(H) dissipation (Hrf‖a) in the superconducting state of Bi2Sr2CaCu2O8 single crystals prior to and after irradiation with 250 MeV 107Ag17+ ions. In the pristine state, P(H) shows an initial decrease with increase in field, reaches a minimum at HM(T) and increases monotonically for H>HM(T). This behavior arises when the electromagnetic coupling between the pancake vortices in adjacent CuO layers becomes dominant on increasing the field and minimizes the distortions of the flux lines by confining the 2D vortices. In the post irradiated state, such an initial decrease and the minimum in P(H) is not observed but only a much reduced rf dissipation that monotonically increases with field from H = 0 onwards is seen. We attribute this difference to the strong enhancement of the tilt modulus C44 of the flux lines on irradiation when the pancake vortices in adjacent CuO bilayers are pinned along the track forming a well-stacked flux line in the field direction (‖c). We have also observed that the rf dissipation disappears at a certain temperature Tsf, at which the normal core of the flux line becomes commensurate with the columnar track diameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the magnetic field (H∥c) dependent rf dissipation (Hrf∥a) in an as-grown Bi2Sr2CaCu2O8 single crystal prior to and after irradiation with 250 MeV 107Ag17+ ions. In a comparison of the responses from the as-grown crystal with an air-annealed crystal, features due to oxygen deficient regions acting as weak links in the former are identified. These features disappear immediately after irradiation of the as-grown crystal. We attribute such behavior to the displacement of oxygen from columnar tracks to deficient regions thus eliminating the weak links. Losses from the same irradiated as-grown crystal stored at 300 K for 60 days show that the features similar but not identical to those observed in the pristine state have reappeared implying that the displaced oxygen is in a metastable configuration in the deficient regions and hence is mobile due to thermal effects even at 300 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium titanyl phosphate single crystals were irradiated with 48 MeV lithium ions at fluences varying from 5×1012 to 1016 ions/cm2. The defects created in the crystal have been characterized using x-ray rocking curve measurements, optical transmittance, and photoluminescence spectroscopy. From x-ray rocking curve studies, the full width at half maximum for the irradiated samples was observed to increase, indicating lattice strain caused by the energetic ions. Optical transparency of these samples was found to decrease upon irradiation. The irradiated samples exhibited a broadband luminescence in the 700–900 nm region, for fluences above 5×1013 ions/cm2. The results indicate that ion-beam-induced optical effects in KTiOPO4 single crystals are very similar to the ones obtained for crystals with “gray tracks,” which are attributed to the electronic transitions in the Ti3+ levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substrate temperature and ion bombardment during deposition have been observed to modify significantly the optical and structural properties of dielectric thin films. Single‐layer films of CeO2 have been deposited by electron beam evaporation with simultaneous oxygen‐ion bombardment using a Kaufman broad beam ion source and maintaining the substrates at elevated temperature. A systematic study has been made on the influence of (a) substrate temperature in the range ambient to 300 °C, (b) ion energy in the range 300–700 eV, and (c) ion current density 100–220 μA/cm2 on optical properties such as refractive index, extinction coefficient, inhomogeneity, packing density, and structural properties. The refractive index increased with in increase in substrate temperature: ion energy up to 600 eV and ion current density. Homogeneous, absorption free and high index (2.48) films have been obtained at 600 eV, 220 μA/cm2 and at substrate temperature of 300 °C. The packing density of the films was observed to be unity for the same deposition conditions. Substrate temperature with simultaneous ion bombardment modified the structure of the films from highly ordered to fine grain structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the perturbation technique, a Kortewege-de-Vries (K-dV) equation for a multicomponent plasma with negative ions and isothermal electrons has been derived. We have discussed the stationary solutions of K-dV equation and it has shown that in the presece of multiple ions, the amplitude of solitons exhibits interesting behaviour, especiallY when the negative ions are present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial-Bain-Path and Uniaxial-Bain-Path studies reveal that a B2-CuZr nanowire with Zr atoms on the surface is energetically more stable compared to a B2-CuZr nanowire with Cu atoms on the surface. Nanowires of cross-sectional dimensions in the range of similar to 20-50 are considered. Such stability is also correlated with the initial state of stress in the nanowires. It is also demonstrated here that a more stable structure, i.e., B2-CuZr nanowire with Zr atoms at surface shows improved yield strength compared to B2-CuZr nanowire with Cu atoms at surface site, over range of temperature under both the tensile and the compressive loadings. Nearly 18% increase in the average yield strength under tensile loading and nearly 26% increase in the averaged yield strength under compressive loading are observed for nanowires with various cross-sectional dimensions and temperatures. It is also observed that the B2-CuZr nanowire with Cu atom at the surface site shows a decrease in failure/plastic strain with an increase in temperature. On the other hand, B2-CuZr nanowires with Zr at the surface site shows an improvement in failure/plastic strain, specially at higher temperature as compared to the B2-CuZr nanowires which are having Cu atoms at the surface site. Finally, a possible design methodology for an energetically stable nano-structure with improved thermo-mechanical properties via manipulating the surface atom configuration is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-aminobenzoate- intercalated copper hydroxysalt was prepared by coprecipitation at high pH (similar to 12). As the pH was reduced to similar to 7 on washing with water, the development of partial positive charge on the amine end of the intercalated anion caused repulsion between the layers leading to delamination and colloidal dispersion of monolayers of copper hydroxysalt in water. The dispersed copper hydroxysalt monolayers were used as precursors for the synthesis of copper(I)/(II) oxide nanoparticles at room temperature. While the hydroxysalt layers yielded spindle-shaped CuO particles when left to stand, they formed hollow spherical nanoparticles of Cu(2)O when treated with an alkaline solution of ascorbic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Base metal substituted Sn(0.95)M(0.05)O(2-delta) (M = Cu, Fe, Mn, Co) catalysts were synthesized by the solution combustion method and characterized by XRD, XPS, TEM and BET surface area analysis. The catalytic activities of these materials were investigated by performing CO oxidation. The rates and the apparent activation energies of the reaction for CO oxidation were determined for each catalyst. All the substituted catalysts showed high rates and lower activation energies for the oxidation of CO as compared to unsubstituted SnO(2). The rate was found to be much higher over copper substituted SnO(2) as compared to other studied catalysts. 100% CO conversion was obtained below 225 degrees C over this catalyst. A bifunctional reaction mechanism was developed that accounts for CO adsorption on base metal and support ions and O(2) dissociation on the oxide ion vacancy. The kinetic parameters were determined by fitting the model to the experimental data. The high rates of the CO oxidation reactions at low temperatures were rationalized by the high dissociative chemisorption of adsorbed O(2) over these catalysts.