993 resultados para conserved noncoding sequence
Resumo:
Although the molecular typing of Pseudomonas aeruginosa is important to understand the local epidemiology of this opportunistic pathogen, it remains challenging. Our aim was to develop a simple typing method based on the sequencing of two highly variable loci. Single-strand sequencing of three highly variable loci (ms172, ms217, and oprD) was performed on a collection of 282 isolates recovered between 1994 and 2007 (from patients and the environment). As expected, the resolution of each locus alone [number of types (NT) = 35-64; index of discrimination (ID) = 0.816-0.964] was lower than the combination of two loci (NT = 78-97; ID = 0.966-0.971). As each pairwise combination of loci gave similar results, we selected the most robust combination with ms172 [reverse; R] and ms217 [R] to constitute the double-locus sequence typing (DLST) scheme for P. aeruginosa. This combination gave: (i) a complete genotype for 276/282 isolates (typability of 98%), (ii) 86 different types, and (iii) an ID of 0.968. Analysis of multiple isolates from the same patients or taps showed that DLST genotypes are generally stable over a period of several months. The high typability, discriminatory power, and ease of use of the proposed DLST scheme makes it a method of choice for local epidemiological analyses of P. aeruginosa. Moreover, the possibility to give unambiguous definition of types allowed to develop an Internet database ( http://www.dlst.org ) accessible by all.
Resumo:
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
Resumo:
Under iron limitation, the opportunistic human pathogen Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted into the extracellular environment, pyochelin complexes ferric ions and delivers them, via the outer membrane receptor FptA, to the bacterial cytoplasm. Extracellular pyochelin also acts as a signalling molecule, inducing the expression of pyochelin biosynthesis and uptake genes by a mechanism involving the AraC-type regulator PchR. We have identified a 32 bp conserved sequence element (PchR-box) in promoter regions of pyochelin-controlled genes and we show that the PchR-box in the pchR-pchDCBA intergenic region is essential for the induction of the pyochelin biosynthetic operon pchDCBA and the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin and iron. PchR-box mutations that interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. We conclude that pyochelin, probably in its iron-loaded state, is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation suggests that the siderophore can enter the cytoplasm.
Resumo:
The malic enzyme (ME) gene is a target for both thyroid hormone receptors and peroxisome proliferator-activated receptors (PPAR). Within the ME promoter, two direct repeat (DR)-1-like elements, MEp and MEd, have been identified as putative PPAR response elements (PPRE). We demonstrate that only MEp and not MEd is able to bind PPAR/retinoid X receptor (RXR) heterodimers and mediate peroxisome proliferator signaling. Taking advantage of the close sequence resemblance of MEp and MEd, we have identified crucial determinants of a PPRE. Using reciprocal mutation analyses of these two elements, we show the preference for adenine as the spacing nucleotide between the two half-sites of the PPRE and demonstrate the importance of the two first bases flanking the core DR1 in 5'. This latter feature of the PPRE lead us to consider the polarity of the PPAR/RXR heterodimer bound to its cognate element. We demonstrate that, in contrast to the polarity of RXR/TR and RXR/RAR bound to DR4 and DR5 elements respectively, PPAR binds to the 5' extended half-site of the response element, while RXR occupies the 3' half-site. Consistent with this polarity is our finding that formation and binding of the PPAR/RXR heterodimer requires an intact hinge T region in RXR while its integrity is not required for binding of the RXR/TR heterodimer to a DR4.
Resumo:
OBJECTIVE: Pancreatic beta-cells exposed to proinflammatory cytokines display alterations in gene expression resulting in defective insulin secretion and apoptosis. MicroRNAs are small noncoding RNAs emerging as key regulators of gene expression. Here, we evaluated the contribution of microRNAs to cytokine-mediated beta-cell cytotoxicity. RESEARCH DESIGN AND METHODS: We used global microarray profiling and real-time PCR analysis to detect changes in microRNA expression in beta-cells exposed to cytokines and in islets of pre-diabetic NOD mice. We assessed the involvement of the microRNAs affected in cytokine-mediated beta-cell failure by modifying their expression in insulin-secreting MIN6 cells. RESULTS: We found that IL-1beta and TNF-alpha induce the expression of miR-21, miR-34a, and miR-146a both in MIN6 cells and human pancreatic islets. We further show an increase of these microRNAs in islets of NOD mice during development of pre-diabetic insulitis. Blocking miR-21, miR-34a, or miR-146a function using antisense molecules did not restore insulin-promoter activity but prevented the reduction in glucose-induced insulin secretion observed upon IL-1beta exposure. Moreover, anti-miR-34a and anti-miR-146a treatment protected MIN6 cells from cytokine-triggered cell death. CONCLUSIONS: Our data identify miR-21, miR-34a, and miR-146a as novel players in beta-cell failure elicited in vitro and in vivo by proinflammatory cytokines, notably during the development of peri-insulitis that precedes overt diabetes in NOD mice.
Resumo:
The complete mitochondrial DNA (mtDNA) control region was amplified and directly sequenced in two species of shrew, Crocidura russula and Sorex araneus (Insectivora, Mammalia). The general organization is similar to that found in other mammals: a central conserved region surrounded by two more variable domains. However, we have found in shrews the simultaneous presence of arrays of tandem repeats in potential locations where repeats tend to occur separately in other mammalian species. These locations correspond to regions which are associated with a possible interruption of the replication processes, either at the end of the three-stranded D-loop structure or toward the end of the heavy-strand replication. In the left domain the repeated sequences (R1 repeats) are 78 bp long, whereas in the right domain the repeats are 12 bp long in C. russula and 14 bp long in S. araneus (R2 repeats). Variation in the copy number of these repeated sequences results in mtDNA control region length differences. Southern blot analysis indicates that level of heteroplasmy (more than one mtDNA form within an individual) differs between species. A comparative study of the R2 repeats in 12 additional species representing three shrew subfamilies provides useful indications for the understanding of the origin and the evolution of these homologous tandemly repeated sequences. An asymmetry in the distribution of variants within the arrays, as well as the constant occurrence of shorter repeated sequences flanking only one side of the R2 arrays, could be related to asymmetry in the replication of each strand of the mtDNA molecule. The pattern of sequence and length variation within and between species, together with the capability of the arrays to form stable secondary structures, suggests that the dominant mechanism involved in the evolution of these arrays in unidirectional replication slippage.
Resumo:
The role of Notch signaling in growth/differentiation control of mammalian epithelial cells is still poorly defined. We show that keratinocyte-specific deletion of the Notch1 gene results in marked epidermal hyperplasia and deregulated expression of multiple differentiation markers. In differentiating primary keratinocytes in vitro endogenous Notch1 is required for induction of p21WAF1/Cip1 expression, and activated Notch1 causes growth suppression by inducing p21WAF1/Cip1 expression. Activated Notch1 also induces expression of 'early' differentiation markers, while suppressing the late markers. Induction of p21WAF1/Cip1 expression and early differentiation markers occur through two different mechanisms. The RBP-Jkappa protein binds directly to the endogenous p21 promoter and p21 expression is induced specifically by activated Notch1 through RBP-Jkappa-dependent transcription. Expression of early differentiation markers is RBP-Jkappa-independent and can be induced by both activated Notch1 and Notch2, as well as the highly conserved ankyrin repeat domain of the Notch1 cytoplasmic region. Thus, Notch signaling triggers two distinct pathways leading to keratinocyte growth arrest and differentiation.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
The peroxisome proliferator-activated receptors (PPAR) and thyroid hormone receptors (TR) are members of the nuclear receptor superfamily, which regulate lipid metabolism and tissue differentiation. In order to bind to DNA and activate transcription, PPAR requires the formation of heterodimers with the retinoid X receptor (RXR). In addition to activating transcription through its own response elements, PPAR is able to selectively down-regulate the transcriptional activity of TR, but not vitamin D receptor. The molecular basis of this functional interaction has not been fully elucidated. By means of site-directed mutagenesis of hPPAR alpha we mapped its inhibitory action on TR to a leucine zipper-like motif in the ligand binding domain of PPAR, which is highly conserved among all subtypes of this receptor and mediates heterodimerization with RXR. Replacement of a single leucine by arginine at position 433 of hPPAR alpha (L433R) abolished heterodimerization of PPAR with RXR and consequently its trans-activating capacity. However, a similar mutation of a leucine residue to arginine at position 422 showed no alteration of heterodimerization, DNA binding, or transcriptional activation. The dimerization deficient mutant L433R was no longer able to inhibit TR action, demonstrating that the selective inhibitory effect of PPAR results from the competition for RXR as well as possibly for other TR-auxiliary proteins. In contrast, abolition of DNA binding by a mutation in the P-box of PPAR (C122S) did not eliminate the inhibition of TR trans-activation, indicating that competition for DNA binding is not involved. Additionally, no evidence for the formation of PPAR:TR heterodimers was found in co-immunoprecipitation experiments. In summary, we have demonstrated that PPAR selectively inhibits the transcriptional activity of TRs by competition for RXR and possibly non-RXR TR-auxiliary proteins. In contrast, this functional interaction is independent of the formation of PPAR:TR heterodimers or competition for DNA binding.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.
Resumo:
Single amino acid substitution is the type of protein alteration most related to human diseases. Current studies seek primarily to distinguish neutral mutations from harmful ones. Very few methods offer an explanation of the final prediction result in terms of the probable structural or functional effect on the protein. In this study, we describe the use of three novel parameters to identify experimentally-verified critical residues of the TP53 protein (p53). The first two parameters make use of a surface clustering method to calculate the protein surface area of highly conserved regions or regions with high nonlocal atomic interaction energy (ANOLEA) score. These parameters help identify important functional regions on the surface of a protein. The last parameter involves the use of a new method for pseudobinding free-energy estimation to specifically probe the importance of residue side-chains to the stability of protein fold. A decision tree was designed to optimally combine these three parameters. The result was compared to the functional data stored in the International Agency for Research on Cancer (IARC) TP53 mutation database. The final prediction achieved a prediction accuracy of 70% and a Matthews correlation coefficient of 0.45. It also showed a high specificity of 91.8%. Mutations in the 85 correctly identified important residues represented 81.7% of the total mutations recorded in the database. In addition, the method was able to correctly assign a probable functional or structural role to the residues. Such information could be critical for the interpretation and prediction of the effect of missense mutations, as it not only provided the fundamental explanation of the observed effect, but also helped design the most appropriate laboratory experiment to verify the prediction results.
Resumo:
The estrogen-responsive element (ERE) present in the 5'-flanking region of the Xenopus laevis vitellogenin (vit) gene B1 has been characterized by transient expression analysis of chimeric vit-tk-CAT (chloramphenicol acetyltransferase) gene constructs transfected into the human estrogen-responsive MCF-7 cell line. The vit B1 ERE behaves like an inducible enhancer, since it is able to confer estrogen inducibility to the heterologous HSV thymidine kinase (tk) promoter in a relative position- and orientation-independent manner. In this assay, the minimal B1 ERE is 33 bp long and consists of two 13 bp imperfect palindromic elements both of which are required for the enhancer activity. A third imperfect palindromic element is present further upstream within the 5'-flanking region of the gene but is unable to confer hormone responsiveness by itself. Similarly, neither element forming the B1 ERE can alone confer estrogen inducibility to the tk promoter. However, in combinations of two, all three imperfect palindromes can act cooperatively to form a functional ERE. In contrast a single 13 bp perfect palindromic element, GGTCACTGTGACC, such as the one found upstream of the vit gene A2, is itself sufficient to act as a fully active ERE. Single point mutations within this element abolish estrogen inducibility, while a defined combination of two mutations converts this ERE into a glucocorticoid-responsive element.
Resumo:
In the liver of oviparous vertebrates vitellogenin gene expression is controlled by estrogen. The nucleotide sequence of the 5' flanking region of the Xenopus laevis vitellogenin genes A1, A2, B1 and B2 has been determined. These sequences have been compared to each other and to the equivalent region of the chicken vitellogenin II and apo-VLDLII genes which are also expressed in the liver in response to estrogen. The homology between the 5' flanking region of the Xenopus genes B1 and B2 is higher than between the corresponding regions of the other closely related genes A1 and A2. Four short blocks of sequence homology which are present at equivalent positions in the vitellogenin genes of both Xenopus laevis and chicken are characterized. A short sequence with two-fold rotational symmetry (GGTCANNNTGACC) was found at similar positions upstream of the five vitellogenin genes and is also present in two copies close to the 5' end of the chicken apo-VLDLII gene. The possible functional significance of this sequence, common to liver estrogen-responsive genes, is discussed.
Resumo:
To generate peripheral T cells that are both self-MHC restricted and self-MHC tolerant, thymocytes are subjected to positive and negative selection. How the TCR discriminates between positive and negative selection ligands is not well understood, although there is substantial evidence that the CD4 and CD8 coreceptors play an important role in this cell fate decision. We have previously identified an evolutionarily conserved motif in the TCR, the alpha-chain connecting peptide motif (alpha-CPM), which allows the TCR to deliver positive selection signals. Thymocytes expressing alpha-CPM-deficient receptors do not undergo positive selection, whereas their negative selection is not impaired. In this work we studied the ligand binding and receptor function of alpha-CPM-deficient TCRs by generating T cell hybridomas expressing wild-type or alpha-CPM-deficient forms of the T1 TCR. This K(d)-restricted TCR is specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide(252-260) IASA-YIPSAEK(ABA)I and is therefore amenable to TCR photoaffinity labeling. The experiments presented in this work show that alpha-CPM-deficient TCRs fail to cooperate with CD8 to enhance ligand binding and functional responses.
Resumo:
Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.