976 resultados para computed tomograph (CT)
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
The study of soil structure, i.e., the pores, is of vital importance in different fields of science and technology. Total pore volume (porosity), pore surface, pore connectivity and pore size distribution are some (probably the most important) of the geometric measurements of pore space. The technology of X-ray computed tomography allows us to obtain 3D images of the inside of a soil sample enabling study of the pores without disturbing the samples. In this work we performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil. We compared samples from tilled soil with samples from a soil with natural vegetation taken in a very close area. Our results show that the main differences between these two groups of samples are total surface area and pore connectivity per unit pore volume.
Resumo:
During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences.
Resumo:
O sistema microPET/CT é um importante equipamento utilizado nas pesquisas de imagem diagnóstica em pequenos animais. O radiofármaco mais usado nesta tecnologia é o fluordeoxiglicose marcado com flúor-18. Este estudo tem como objetivo efetuar o controle radiológico no laboratório de pesquisa microPET/CT do Centro de Radiofarmácia do IPEN-CNEN/SP, de forma a satisfazer tanto as normas nacionais como as recomendações internacionais. O laboratório está classificado pela equipe de radioproteção da instalação como área supervisionada, nas quais embora não seja obrigatória a adoção de medidas específicas de proteção e segurança, devem ser submetidas reavaliações regulares das condições do ambiente de trabalho. Visando assegurar a proteção radiológica dos trabalhadores diretamente envolvidos no manuseio do equipamento, realizou-se o monitoramento do local de trabalho e a avaliação do controle de dose individual. Inicialmente foi feito o monitoramento pré-operacional, isto é, o levantamento radiométrico no laboratório. Além disso, mediu-se nível de radiação externa nas instalações do laboratório e suas adjacências, por meio da colocação de nove dosímetros termoluminescentes (TL) de CaSO4:Dy, em locais previamente selecionados. Os indivíduos ocupacionalmente expostos foram avaliados mensalmente por meio do uso de dosímetros TL posicionados no tórax e por medidas de corpo inteiro, tomadas a cada seis meses. O período do estudo foi de dois anos, com início em abril de 2014. Para o controle do microPET/CT realizou-se testes de desempenho de acordo com o protocolo padrão do equipamento e em conformidade com a norma desenvolvida pela força tarefa para estudos com PET em animais Animal PET Standard Task Force. O presente estudo permitiu demonstrar que os níveis de radiação das áreas (estimativas de dose ambiente e dose efetiva), assim como a blindagem do equipamento estão adequados de acordo com os limites da exposição ocupacional. Ressalta-se a importância de se seguir rigorosamente os princípios de radioproteção, já que se trata de pesquisas com fontes radioativas não seladas.
Resumo:
Tra le patologie ossee attualmente riconosciute, l’osteoporosi ricopre il ruolo di protagonista data le sua diffusione globale e la multifattorialità delle cause che ne provocano la comparsa. Essa è caratterizzata da una diminuzione quantitativa della massa ossea e da alterazioni qualitative della micro-architettura del tessuto osseo con conseguente aumento della fragilità di quest’ultimo e relativo rischio di frattura. In campo medico-scientifico l’imaging con raggi X, in particolare quello tomografico, da decenni offre un ottimo supporto per la caratterizzazione ossea; nello specifico la microtomografia, definita attualmente come “gold-standard” data la sua elevata risoluzione spaziale, fornisce preziose indicazioni sulla struttura trabecolare e corticale del tessuto. Tuttavia la micro-CT è applicabile solo in-vitro, per cui l’obiettivo di questo lavoro di tesi è quello di verificare se e in che modo una diversa metodica di imaging, quale la cone-beam CT (applicabile invece in-vivo), possa fornire analoghi risultati, pur essendo caratterizzata da risoluzioni spaziali più basse. L’elaborazione delle immagini tomografiche, finalizzata all’analisi dei più importanti parametri morfostrutturali del tessuto osseo, prevede la segmentazione delle stesse con la definizione di una soglia ad hoc. I risultati ottenuti nel corso della tesi, svolta presso il Laboratorio di Tecnologia Medica dell’Istituto Ortopedico Rizzoli di Bologna, mostrano una buona correlazione tra le due metodiche quando si analizzano campioni definiti “ideali”, poiché caratterizzati da piccole porzioni di tessuto osseo di un solo tipo (trabecolare o corticale), incluso in PMMA, e si utilizza una soglia fissa per la segmentazione delle immagini. Diversamente, in casi “reali” (vertebre umane scansionate in aria) la stessa correlazione non è definita e in particolare è da escludere l’utilizzo di una soglia fissa per la segmentazione delle immagini.
Resumo:
18-Fluorodeoxyglucose (FDG-PET/CT) is an established imaging modality that has been proven to be of benefit in the management of aggressive B-cell non-Hodgkin's lymphoma, such as diffuse large B-cell lymphoma and advanced stage follicular lymphoma. The combination of anatomic and functional imaging afforded by FDG-PET/CT has led to superior sensitivity and specificity in the primary staging, restaging, and assessment of response to treatment of hematological malignancies when compared to FDG-PET and CT alone. The use of FDG-PET/CT for post treatment surveillance imaging remains controversial, and further study is needed to ascertain whether this modality is cost effective and appropriate for use in this setting.
Resumo:
While it is well known that exposure to radiation can result in cataract formation, questions still remain about the presence of a dose threshold in radiation cataractogenesis. Since the exposure history from diagnostic CT exams is well documented in a patient’s medical record, the population of patients chronically exposed to radiation from head CT exams may be an interesting area to explore for further research in this area. However, there are some challenges in estimating lens dose from head CT exams. An accurate lens dosimetry model would have to account for differences in imaging protocols, differences in head size, and the use of any dose reduction methods.
The overall objective of this dissertation was to develop a comprehensive method to estimate radiation dose to the lens of the eye for patients receiving CT scans of the head. This research is comprised of a physics component, in which a lens dosimetry model was derived for head CT, and a clinical component, which involved the application of that dosimetry model to patient data.
The physics component includes experiments related to the physical measurement of the radiation dose to the lens by various types of dosimeters placed within anthropomorphic phantoms. These dosimeters include high-sensitivity MOSFETs, TLDs, and radiochromic film. The six anthropomorphic phantoms used in these experiments range in age from newborn to adult.
First, the lens dose from five clinically relevant head CT protocols was measured in the anthropomorphic phantoms with MOSFET dosimeters on two state-of-the-art CT scanners. The volume CT dose index (CTDIvol), which is a standard CT output index, was compared to the measured lens doses. Phantom age-specific CTDIvol-to-lens dose conversion factors were derived using linear regression analysis. Since head size can vary among individuals of the same age, a method was derived to estimate the CTDIvol-to-lens dose conversion factor using the effective head diameter. These conversion factors were derived for each scanner individually, but also were derived with the combined data from the two scanners as a means to investigate the feasibility of a scanner-independent method. Using the scanner-independent method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter, most of the fitted lens dose values fell within 10-15% of the measured values from the phantom study, suggesting that this is a fairly accurate method of estimating lens dose from the CTDIvol with knowledge of the patient’s head size.
Second, the dose reduction potential of organ-based tube current modulation (OB-TCM) and its effect on the CTDIvol-to-lens dose estimation method was investigated. The lens dose was measured with MOSFET dosimeters placed within the same six anthropomorphic phantoms. The phantoms were scanned with the five clinical head CT protocols with OB-TCM enabled on the one scanner model at our institution equipped with this software. The average decrease in lens dose with OB-TCM ranged from 13.5 to 26.0%. Using the size-specific method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter for protocols with OB-TCM, the majority of the fitted lens dose values fell within 15-18% of the measured values from the phantom study.
Third, the effect of gantry angulation on lens dose was investigated by measuring the lens dose with TLDs placed within the six anthropomorphic phantoms. The 2-dimensional spatial distribution of dose within the areas of the phantoms containing the orbit was measured with radiochromic film. A method was derived to determine the CTDIvol-to-lens dose conversion factor based upon distance from the primary beam scan range to the lens. The average dose to the lens region decreased substantially for almost all the phantoms (ranging from 67 to 92%) when the orbit was exposed to scattered radiation compared to the primary beam. The effectiveness of this method to reduce lens dose is highly dependent upon the shape and size of the head, which influences whether or not the angled scan range coverage can include the entire brain volume and still avoid the orbit.
The clinical component of this dissertation involved performing retrospective patient studies in the pediatric and adult populations, and reconstructing the lens doses from head CT examinations with the methods derived in the physics component. The cumulative lens doses in the patients selected for the retrospective study ranged from 40 to 1020 mGy in the pediatric group, and 53 to 2900 mGy in the adult group.
This dissertation represents a comprehensive approach to lens of the eye dosimetry in CT imaging of the head. The collected data and derived formulas can be used in future studies on radiation-induced cataracts from repeated CT imaging of the head. Additionally, it can be used in the areas of personalized patient dose management, and protocol optimization and clinician training.
Resumo:
Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables full spectrum CT in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical eects in the detector and are very noisy due to photon starvation. In this work, we proposed two methods based on machine learning to address the spectral distortion issue and to improve the material decomposition. This rst approach is to model distortions using an articial neural network (ANN) and compensate for the distortion in a statistical reconstruction. The second approach is to directly correct for the distortion in the projections. Both technique can be done as a calibration process where the neural network can be trained using 3D printed phantoms data to learn the distortion model or the correction model of the spectral distortion. This replaces the need for synchrotron measurements required in conventional technique to derive the distortion model parametrically which could be costly and time consuming. The results demonstrate experimental feasibility and potential advantages of ANN-based distortion modeling and correction for more accurate K-edge imaging with a PCXD. Given the computational eciency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.
Resumo:
Prior work of our research group, that quantified the alarming levels of radiation dose to patients with Crohn’s disease from medical imaging and the notable shift towards CT imaging making these patients an at risk group, provided context for this work. CT delivers some of the highest doses of ionising radiation in diagnostic radiology. Once a medical imaging examination is deemed justified, there is an onus on the imaging team to endeavour to produce diagnostic quality CT images at the lowest possible radiation dose to that patient. The fundamental limitation with conventional CT raw data reconstruction was the inherent coupling of administered radiation dose with observed image noise – the lower the radiation dose, the noisier the image. The renaissance, rediscovery and refinement of iterative reconstruction removes this limitation allowing either an improvement in image quality without increasing radiation dose or maintenance of image quality at a lower radiation dose compared with traditional image reconstruction. This thesis is fundamentally an exercise in optimisation in clinical CT practice with the objectives of assessment of iterative reconstruction as a method for improvement of image quality in CT, exploration of the associated potential for radiation dose reduction, and development of a new split dose CT protocol with the aim of achieving and validating diagnostic quality submillisiever t CT imaging in patients with Crohn’s disease. In this study, we investigated the interplay of user-selected parameters on radiation dose and image quality in phantoms and cadavers, comparing traditional filtered back projection (FBP) with iterative reconstruction algorithms. This resulted in the development of an optimised, refined and appropriate split dose protocol for CT of the abdomen and pelvis in clinical patients with Crohn’s disease allowing contemporaneous acquisition of both modified and conventional dose CT studies. This novel algorithm was then applied to 50 patients with a suspected acute complication of known Crohn’s disease and the raw data reconstructed with FBP, adaptive statistical iterative reconstruction (ASiR) and model based iterative reconstruction (MBIR). Conventional dose CT images with FBP reconstruction were used as the reference standard with which the modified dose CT images were compared in terms of radiation dose, diagnostic findings and image quality indices. As there are multiple possible user-selected strengths of ASiR available, these were compared in terms of image quality to determine the optimal strength for this modified dose CT protocol. Modified dose CT images with MBIR were also compared with contemporaneous abdominal radiograph, where performed, in terms of diagnostic yield and radiation dose. Finally, attenuation measurements in organs, tissues, etc. with each reconstruction algorithm were compared to assess for preservation of tissue characterisation capabilities. In the phantom and cadaveric models, both forms of iterative reconstruction examined (ASiR and MBIR) were superior to FBP across a wide variety of imaging protocols, with MBIR superior to ASiR in all areas other than reconstruction speed. We established that ASiR appears to work to a target percentage noise reduction whilst MBIR works to a target residual level of absolute noise in the image. Modified dose CT images reconstructed with both ASiR and MBIR were non-inferior to conventional dose CT with FBP in terms of diagnostic findings, despite reduced subjective and objective indices of image quality. Mean dose reductions of 72.9-73.5% were achieved with the modified dose protocol with a mean effective dose of 1.26mSv. MBIR was again demonstrated superior to ASiR in terms of image quality. The overall optimal ASiR strength for the modified dose protocol used in this work is ASiR 80%, as this provides the most favourable balance of peak subjective image quality indices with less objective image noise than the corresponding conventional dose CT images reconstructed with FBP. Despite guidelines to the contrary, abdominal radiographs are still often used in the initial imaging of patients with a suspected complication of Crohn’s disease. We confirmed the superiority of modified dose CT with MBIR over abdominal radiographs at comparable doses in detection of Crohn’s disease and non-Crohn’s disease related findings. Finally, we demonstrated (in phantoms, cadavers and in vivo) that attenuation values do not change significantly across reconstruction algorithms meaning preserved tissue characterisation capabilities with iterative reconstruction. Both adaptive statistical and model based iterative reconstruction algorithms represent feasible methods of facilitating acquisition diagnostic quality CT images of the abdomen and pelvis in patients with Crohn’s disease at markedly reduced radiation doses. Our modified dose CT protocol allows dose savings of up to 73.5% compared with conventional dose CT, meaning submillisievert imaging is possible in many of these patients.
Resumo:
The purpose of this study was to investigate the subjective perception of anxiety pre- and post-procedure, and explore the relationship between demographic, clinical variables and cancer patients' anxiety during a positron emission tomography/computed tomography (PET/CT) scan. Two hundred and thirty-two oncological out patients, with clinical indication for performing an (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET/CT scan and attending a nuclear medicine (NM) department, participated in the study. Patients' anxiety and subjective experience of PET/CT were examined using two self-report questionnaires. The pre-procedure questionnaire focused on demographic information, level of knowledge regarding the scan and subjective perception of anxiety before the procedure. The post-procedure questionnaire included the subjective perception anxiety after the procedure, information adequacy and satisfaction with the NM department. The self-reported data indicate that patients were anxious during PET/CT. Furthermore, our data revealed a significant difference between the anxiety pre-procedure and post-procedure (z = -3909, p < 0.05), in which the anxiety pre-procedure has significantly higher values. No significant correlation was found between anxiety and age of the patients, education levels, adequacy of information or satisfaction with the NM Department. Perception of anxiety post-procedure differs between gender (U = 5641, p = 0.033). In conclusion, PET/CT generated anxiety levels in oncological patients, especially before the procedure. Although patients seemed to be satisfied with information delivered by staff and with the NM Department, attention has to be focused on effective interventions strategies that help patients to reduce anxiety.
Resumo:
Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems. Methods: An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC). Results: JAFROC analysis showed a significant difference (P < 0.0001) in lesion detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density. Conclusion: Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified.
Resumo:
Background and Purpose—High blood pressure (BP) is present in 80% of patients with acute ischemic stroke and is independently associated with poor outcome. There are few data examining the relationship between admission BP and acute CT findings. Methods—TAIST was a randomized controlled trial assessing 10 days of treatment with tinzaparin versus aspirin in 1489 patients with acute ischemic stroke (48 hr) with admission BP of 220/120 mm Hg. CT brain scans were performed before randomization and after 10 days. The relationships between baseline BP and adjudicated CT findings were assessed. Odds ratios per 10 mm Hg change in BP were calculated. Results—Higher systolic BP (SBP) was associated with abnormal CT scans because of independent associations with chronic changes of leukoariosis (OR, 1.12; 95% CI, 1.05–1.17) and old infarction (OR, 1.12; 95% CI, 1.06 –1.17) at baseline, and signs of visible infarction at day 10 (OR, 1.06; 95% CI, 1.00 –1.13). A lower SBP was associated with signs of acute infarction (OR, 0.94; 95% CI, 0.89–0.99). Hemorrhagic transformation, dense middle cerebral artery sign, mass effect, and cerebral edema at day 10 were not independently associated with baseline BP. Conclusion—Although high baseline BP is independently associated with a poor outcome after stroke, this was not shown to be through an association with increased hemorrhagic transformation, cerebral edema, or mass effect; trial design may be suboptimal to detect this. Higher SBP is associated with visible infarction on day 10 scans. The influence of changing BP in acute stroke on CT findings is still to be ascertained.