935 resultados para complex data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the propagation of the uncertainty from basic data across different scale and physics phenomena -> through complex coupled multi-physics and multi-scale simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, a variety of systems have been developed that export the workflows used to analyze data and make them part of published articles. We argue that the workflows that are published in current approaches are dependent on the specific codes used for execution, the specific workflow system used, and the specific workflow catalogs where they are published. In this paper, we describe a new approach that addresses these shortcomings and makes workflows more reusable through: 1) the use of abstract workflows to complement executable workflows to make them reusable when the execution environment is different, 2) the publication of both abstract and executable workflows using standards such as the Open Provenance Model that can be imported by other workflow systems, 3) the publication of workflows as Linked Data that results in open web accessible workflow repositories. We illustrate this approach using a complex workflow that we re-created from an influential publication that describes the generation of 'drugomes'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, Internet is a place where social networks have reached an important impact in collaboration among people over the world in different ways. This article proposes a new paradigm for building CSCW business tools following the novel ideas provided by the social web to collaborate and generate awareness. An implementation of these concepts is described, including the components we provide to collaborate in workspaces, (such as videoconference, chat, desktop sharing, forums or temporal events), and the way we generate awareness from these complex social data structures. Figures and validation results are also presented to stress that this architecture has been defined to support awareness generation via joining current and future social data from business and social networks worlds, based on the idea of using social data stored in the cloud.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low complex but highly-efficient object counter algorithm is presented that can be embedded in hardware with a low computational power. This is achieved by a novel soft-data association strategy that can handle multimodal distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of data and activities in business processes can be used to greatly facilítate several relevant tasks performed at design- and run-time, such as fragmentation, compliance checking, or top-down design. Business processes are often described using workflows. We present an approach for mechanically inferring business domain-specific attributes of workflow components (including data Ítems, activities, and elements of sub-workflows), taking as starting point known attributes of workflow inputs and the structure of the workflow. We achieve this by modeling these components as concepts and applying sharing analysis to a Horn clause-based representation of the workflow. The analysis is applicable to workflows featuring complex control and data dependencies, embedded control constructs, such as loops and branches, and embedded component services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boundary element method is specially well suited for the analysis of the seismic response of valleys of complicated topography and stratigraphy. In this paper the method’s capabilities are illustrated using as an example an irregularity stratified (test site) sedimentary basin that has been modelled using 2D discretization and the Direct Boundary Element Method (DBEM). Site models displaying different levels of complexity are used in practice. The multi-layered model’s seismic response shows generally good agreement with observed data amplification levels, fundamental frequencies and the high spatial variability. Still important features such as the location of high frequencies peaks are missing. Even 2D simplified models reveal important characteristics of the wave field that 1D modelling does not show up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU) times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data grid services have been used to deal with the increasing needs of applications in terms of data volume and throughput. The large scale, heterogeneity and dynamism of grid environments often make management and tuning of these data services very complex. Furthermore, current high-performance I/O approaches are characterized by their high complexity and specific features that usually require specialized administrator skills. Autonomic computing can help manage this complexity. The present paper describes an autonomic subsystem intended to provide self-management features aimed at efficiently reducing the I/O problem in a grid environment, thereby enhancing the quality of service (QoS) of data access and storage services in the grid. Our proposal takes into account that data produced in an I/O system is not usually immediately required. Therefore, performance improvements are related not only to current but also to any future I/O access, as the actual data access usually occurs later on. Nevertheless, the exact time of the next I/O operations is unknown. Thus, our approach proposes a long-term prediction designed to forecast the future workload of grid components. This enables the autonomic subsystem to determine the optimal data placement to improve both current and future I/O operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy consumption in data centers is nowadays a critical objective because of its dramatic environmental and economic impact. Over the last years, several approaches have been proposed to tackle the energy/cost optimization problem, but most of them have failed on providing an analytical model to target both the static and dynamic optimization domains for complex heterogeneous data centers. This paper proposes and solves an optimization problem for the energy-driven configuration of a heterogeneous data center. It also advances in the proposition of a new mechanism for task allocation and distribution of workload. The combination of both approaches outperforms previous published results in the field of energy minimization in heterogeneous data centers and scopes a promising area of research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind farms have been extensively simulated through engineering models for the estimation of wind speed and power deficits inside wind farms. These models were designed initially for a few wind turbines located in flat terrain. Other models based on the parabolic approximation of Navier Stokes equations were developed, making more realistic and feasible the operational resolution of big wind farms in flat terrain and offshore sites. These models have demonstrated to be accurate enough when solving wake effects for this type of environments. Nevertheless, few analyses exist on how complex terrain can affect the behaviour of wind farm wake flow. Recent numerical studies have demonstrated that topographical wakes induce a significant effect on wind turbines wakes, compared to that on flat terrain. This circumstance has recommended the development of elliptic CFD models which allow global simulation of wind turbine wakes in complex terrain. An accurate simplification for the analysis of wind turbine wakes is the actuator disk technique. Coupling this technique with CFD wind models enables the estimation of wind farm wakes preserving the extraction of axial momentum present inside wind farms. This paper describes the analysis and validation of the elliptical wake model CFDWake 1.0 against experimental data from an operating wind farm located in complex terrain. The analysis also reports whether it is possible or not to superimpose linearly the effect of terrain and wind turbine wakes. It also represents one of the first attempts to observe the performance of engineering models compares in large complex terrain wind farms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main problem of pedestrian dead-reckoning (PDR) using only a body-attached inertial measurement unit is the accumulation of heading errors. The heading provided by magnetometers in indoor buildings is in general not reliable and therefore it is commonly not used. Recently, a new method was proposed called heuristic drift elimination (HDE) that minimises the heading error when navigating in buildings. It assumes that the majority of buildings have their corridors parallel to each other, or they intersect at right angles, and consequently most of the time the person walks along a straight path with a heading constrained to one of the four possible directions. In this article we study the performance of HDE-based methods in complex buildings, i.e. with pathways also oriented at 45°, long curved corridors, and wide areas where non-oriented motion is possible. We explain how the performance of the original HDE method can be deteriorated in complex buildings, and also, how severe errors can appear in the case of false matches with the building's dominant directions. Although magnetic compassing indoors has a chaotic behaviour, in this article we analyse large data-sets in order to study the potential use that magnetic compassing has to estimate the absolute yaw angle of a walking person. Apart from these analysis, this article also proposes an improved HDE method called Magnetically-aided Improved Heuristic Drift Elimination (MiHDE), that is implemented over a PDR framework that uses foot-mounted inertial navigation with an extended Kalman filter (EKF). The EKF is fed with the MiHDE-estimated orientation error, gyro bias corrections, as well as the confidence over that corrections. We experimentally evaluated the performance of the proposed MiHDE-based PDR method, comparing it with the original HDE implementation. Results show that both methods perform very well in ideal orthogonal narrow-corridor buildings, and MiHDE outperforms HDE for non-ideal trajectories (e.g. curved paths) and also makes it robust against potential false dominant direction matchings.