998 resultados para communication segmentation
Resumo:
Visibility constraints can aid the segmentation of foreground objects observed with multiple range images. In our approach, points are defined as foreground if they can be determined to occlude some {em empty space} in the scene. We present an efficient algorithm to estimate foreground points in each range view using explicit epipolar search. In cases where the background pattern is stationary, we show how visibility constraints from other views can generate virtual background values at points with no valid depth in the primary view. We demonstrate the performance of both algorithms for detecting people in indoor office environments.
Resumo:
In a Communication Bootstrapping system, peer components with different perceptual worlds invent symbols and syntax based on correlations between their percepts. I propose that Communication Bootstrapping can also be used to acquire functional definitions of words and causal reasoning knowledge. I illustrate this point with several examples, then sketch the architecture of a system in progress which attempts to execute this task.
Resumo:
This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task and for evaluating performance on a test set. A video camera and previously developed background subtraction algorithms can automatically produce a large database of motion-segmented images for minimal cost. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape. This work was funded in part by the Office of Naval Research contract #N00014-00-1-0298, in part by the Singapore-MIT Alliance agreement of 11/6/98, and in part by a National Science Foundation Graduate Student Fellowship.
Resumo:
Conventional parallel computer architectures do not provide support for non-uniformly distributed objects. In this thesis, I introduce sparsely faceted arrays (SFAs), a new low-level mechanism for naming regions of memory, or facets, on different processors in a distributed, shared memory parallel processing system. Sparsely faceted arrays address the disconnect between the global distributed arrays provided by conventional architectures (e.g. the Cray T3 series), and the requirements of high-level parallel programming methods that wish to use objects that are distributed over only a subset of processing elements. A sparsely faceted array names a virtual globally-distributed array, but actual facets are lazily allocated. By providing simple semantics and making efficient use of memory, SFAs enable efficient implementation of a variety of non-uniformly distributed data structures and related algorithms. I present example applications which use SFAs, and describe and evaluate simple hardware mechanisms for implementing SFAs. Keeping track of which nodes have allocated facets for a particular SFA is an important task that suggests the need for automatic memory management, including garbage collection. To address this need, I first argue that conventional tracing techniques such as mark/sweep and copying GC are inherently unscalable in parallel systems. I then present a parallel memory-management strategy, based on reference-counting, that is capable of garbage collecting sparsely faceted arrays. I also discuss opportunities for hardware support of this garbage collection strategy. I have implemented a high-level hardware/OS simulator featuring hardware support for sparsely faceted arrays and automatic garbage collection. I describe the simulator and outline a few of the numerous details associated with a "real" implementation of SFAs and SFA-aware garbage collection. Simulation results are used throughout this thesis in the evaluation of hardware support mechanisms.
Resumo:
Li, Longzhuang, Liu, Yonghuai, Obregon, A., Weatherston, M. Visual Segmentation-Based Data Record Extraction From Web Documents. Proceedings of IEEE International Conference on Information Reuse and Integration, 2007, pp. 502-507. Sponsorship: IEEE
Resumo:
Y. Zhu, S. Williams and R. Zwiggelaar, 'A hybrid ASM approach for sparse volumetric data segmentation', Pattern Recognition and Image Analysis 17 (2), 252-258 (2007)
Resumo:
ROSSI: Emergence of communication in Robots through Sensorimotor and Social Interaction, T. Ziemke, A. Borghi, F. Anelli, C. Gianelli, F. Binkovski, G. Buccino, V. Gallese, M. Huelse, M. Lee, R. Nicoletti, D. Parisi, L. Riggio, A. Tessari, E. Sahin, International Conference on Cognitive Systems (CogSys 2008), University of Karlsruhe, Karlsruhe, Germany, 2008 Sponsorship: EU-FP7
Resumo:
This paper analyzes the relationship between communication apprehension and language anxiety from the perspective of gender. As virtually no empirical studies have addressed the explicit influence of gender on language anxiety in communication apprehensives, this paper proposes that females are generally more sensitive to anxiety, as reflected in various spheres of communication. For this reason, language anxiety levels in communication apprehensive females should be higher, unlike those of communication apprehensive males. Comparisons between them were made using a student t test, two-way ANOVA, and post-hoc Tukey test. The results revealed that Polish communication apprehensive secondary grammar school males and females do not differ in their levels of language anxiety, although nonapprehensive males experience significantly lower language anxiety than their female peers. It is argued that the finding can be attributed to developmental patterns, gender socialization processes, classroom practices, and the uniqueness of the FL learning process, which is a stereotypically female domain.
Resumo:
Communities of faith have appeared online since the inception of computer - mediated communication (CMC)and are now ubiquitous. Yet the character and legitimacy of Internet communities as ecclesial bodies is often disputed by traditional churches; and the Internet's ability to host the church as church for online Christians remains a question. This dissertation carries out a practical theological conversation between three main sources: the phenomenon of the church online; ecclesiology (especially that characteristic of Reformed communities); and communication theory. After establishing the need for this study in Chapter 1, Chapter 2 investigates the online presence of Christians and trends in their Internet use, including its history and current expressions. Chapter 3 sets out an historical overview of the Reformed Tradition, focusing on the work of John Calvin and Karl Barth, as well as more contemporary theologians. With a theological context in which to consider online churches in place, Chapter 4 introduces four theological themes prominent in both ecclesiology and CMC studies: authority; community; mediation; and embodiment. These themes constitute the primary lens through which the dissertation conducts a critical-confessional interface between communication theory and ecclesiology in the examination of CMC. Chapter 5 continues the contextualization of online churches with consideration of communication theories that impact CMC, focusing on three major communication theories: Narrative Theory; Interpretive Theory; and Speech Act Theory. Chapter 6 contains the critical conversation between ecclesiology and communication theory by correlating the aforementioned communication theories with Narrative Theology, Communities of Practice, and Theo-Drama, and applying these to the four theological themes noted above. In addition, new or anticipated developments in CMC investigated in relationship to traditional ecclesiologies and the prospect of cyber-ecclesiology. Chapter 7 offers an evaluative tool consisting of a three-step hermeneutical process that examines: 1) the history, tradition, and ecclesiology of the particular community being evaluated; 2) communication theories and the process of religious-social shaping of technology; and 3) CMC criteria for establishing the presence of a stable, interactive, and relational community. As this hermeneutical process unfolds, it holds the church at the center of the process, seeking a contextual yet faithful understanding of the church.
Resumo:
A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin-color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and predictions of the Markov model. The evolution of the skin-color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and resampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. The accuracy of the new dynamic skin color segmentation algorithm is compared to that obtained via a static color model. Segmentation accuracy is evaluated using labeled ground-truth video sequences taken from staged experiments and popular movies. An overall increase in segmentation accuracy of up to 24% is observed in 17 out of 21 test sequences. In all but one case the skin-color classification rates for our system were higher, with background classification rates comparable to those of the static segmentation.
Resumo:
Extensible systems allow services to be configured and deployed for the specific needs of individual applications. This paper describes a safe and efficient method for user-level extensibility that requires only minimal changes to the kernel. A sandboxing technique is described that supports multiple logical protection domains within the same address space at user-level. This approach allows applications to register sandboxed code with the system, that may be executed in the context of any process. Our approach differs from other implementations that require special hardware support, such as segmentation or tagged translation look-aside buffers (TLBs), to either implement multiple protection domains in a single address space, or to support fast switching between address spaces. Likewise, we do not require the entire system to be written in a type-safe language, to provide fine-grained protection domains. Instead, our user-level sandboxing technique requires only paged-based virtual memory support, and the requirement that extension code is written either in a type-safe language, or by a trusted source. Using a fast method of upcalls, we show how our sandboxing technique for implementing logical protection domains provides significant performance improvements over traditional methods of invoking user-level services. Experimental results show our approach to be an efficient method for extensibility, with inter-protection domain communication costs close to those of hardware-based solutions leveraging segmentation.
Resumo:
Current low-level networking abstractions on modern operating systems are commonly implemented in the kernel to provide sufficient performance for general purpose applications. However, it is desirable for high performance applications to have more control over the networking subsystem to support optimizations for their specific needs. One approach is to allow networking services to be implemented at user-level. Unfortunately, this typically incurs costs due to scheduling overheads and unnecessary data copying via the kernel. In this paper, we describe a method to implement efficient application-specific network service extensions at user-level, that removes the cost of scheduling and provides protected access to lower-level system abstractions. We present a networking implementation that, with minor modifications to the Linux kernel, passes data between "sandboxed" extensions and the Ethernet device without copying or processing in the kernel. Using this mechanism, we put a customizable networking stack into a user-level sandbox and show how it can be used to efficiently process and forward data via proxies, or intermediate hosts, in the communication path of high performance data streams. Unlike other user-level networking implementations, our method makes no special hardware requirements to avoid unnecessary data copies. Results show that we achieve a substantial increase in throughput over comparable user-space methods using our networking stack implementation.
Resumo:
An automated system for detection of head movements is described. The goal is to label relevant head gestures in video of American Sign Language (ASL) communication. In the system, a 3D head tracker recovers head rotation and translation parameters from monocular video. Relevant head gestures are then detected by analyzing the length and frequency of the motion signal's peaks and valleys. Each parameter is analyzed independently, due to the fact that a number of relevant head movements in ASL are associated with major changes around one rotational axis. No explicit training of the system is necessary. Currently, the system can detect "head shakes." In experimental evaluation, classification performance is compared against ground-truth labels obtained from ASL linguists. Initial results are promising, as the system matches the linguists' labels in a significant number of cases.
Resumo:
As new multi-party edge services are deployed on the Internet, application-layer protocols with complex communication models and event dependencies are increasingly being specified and adopted. To ensure that such protocols (and compositions thereof with existing protocols) do not result in undesirable behaviors (e.g., livelocks) there needs to be a methodology for the automated checking of the "safety" of these protocols. In this paper, we present ingredients of such a methodology. Specifically, we show how SPIN, a tool from the formal systems verification community, can be used to quickly identify problematic behaviors of application-layer protocols with non-trivial communication models—such as HTTP with the addition of the "100 Continue" mechanism. As a case study, we examine several versions of the specification for the Continue mechanism; our experiments mechanically uncovered multi-version interoperability problems, including some which motivated revisions of HTTP/1.1 and some which persist even with the current version of the protocol. One such problem resembles a classic degradation-of-service attack, but can arise between well-meaning peers. We also discuss how the methods we employ can be used to make explicit the requirements for hardening a protocol's implementation against potentially malicious peers, and for verifying an implementation's interoperability with the full range of allowable peer behaviors.