999 resultados para commercial chemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lolium multiflorum (Lm) grass pollen is the major cause of pollinosis in Southern Brazil. The objectives of this study were to investigate immunodominant components of Lm pollen allergens and the cross-reactivity of IgE with commercial grass pollen allergen extracts. Thirty-eight serum samples from patients with seasonal allergic rhinitis (SAR), 35 serum samples from patients with perennial allergic rhinitis (PAR) and 30 serum samples from non-atopic subjects were analyzed. Allergen sensitization was evaluated using skin prick test and serum IgE levels against Lm pollen extract were determined by ELISA. Inhibition ELISA and immunoblot were used to evaluate the cross-reactivity of IgE between allergens from Lm and commercial grass pollen extracts, including L. perenne (Lp), grass mix I (GI) and II (GII) extracts. IgE antibodies against Lm were detected in 100% of SAR patients and 8.6% of PAR patients. Inhibition ELISA demonstrated IgE cross-reactivity between homologous (Lm) and heterologous (Lp or GII) grass pollen extracts, but not for the GI extract. Fifteen IgE-binding Lm components were detected and immunoblot bands of 26, 28-30, and 32-35 kDa showed >90% recognition. Lm, Lp and GII extracts significantly inhibited IgE binding to the most immunodominant Lm components, particularly the 55 kDa band. The 26 kDa and 90-114 kDa bands presented the lowest amount of heterologous inhibition. We demonstrated that Lm extract contains both Lm-specific and cross-reactive IgE-binding components and therefore it is suitable for measuring quantitative IgE levels for diagnostic and therapeutic purposes in patients with pollinosis sensitized to Lm grass pollen rather than other phylogenetically related grass pollen extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic acids are present in sour cassava starch ("polvilho azedo") and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC) analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g), acetic (0 to 0.068 g/100g), propionic (0 to 0.013 g/100g) and butyric (0 to 0.057 g/100g), that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The freezing times of fruit pulp models packed and conditioned in multi-layered boxes were evaluated under conditions similar to those employed commercially. Estimating the freezing time is a difficult practice due to the presence of significant voids in the boxes, whose influence may be analyzed by means of various methods. In this study, a procedure for estimating freezing time by using the models described in the literature was compared with experimental measurements by collecting time/temperature data. The following results show that the airflow through packages is a significant parameter for freezing time estimation. When the presence of preferential channels was considered, the predicted freezing time in the models could be 10% lower than the experimental values, depending on the method. The isotherms traced as a function of the location of the samples inside the boxes showed the displacement of the thermal center in relation to the geometric center of the product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to develop laboratory test methods for characterizing the effects of changed moisture content on paperboard trays produced by press-forming process. Influence of moisture on the properties of unconverted paperboard such as bending stiffness, bursting strength, and curling was studied. Paperboard and tray samples were tested after storing in different relative humidity conditions (35, 50, 65, 80 and 95% RH). The effect of PE and PET extrusion coatings on these properties was also studied. It was found that increase in moisture content of paperboard decreases bending and bursting strength, dimensional stability and stiffness of paperboard trays. Such physical and mechanical properties as bending stiffness and curling of paperboard seem to define the stiffness of ready-made trays and their dimensional stability. Paperboards and trays with extruded PE and PET one sided coatings demonstrated higher strength properties but at the same time had lower dimensional stability comparing to uncoated paperboards. Samples with smaller polymer coat weight had better dimensional stability than respective samples with higher coat weight. It was also found that preconditioning of paperboard in lower humidity environment before press-forming could improve dimensional stability and stiffness of ready-made tray.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermotolerant capacity of several lactic acid bacteria strains isolated from cooked commercial sausages was determined. Four strains were positively identified as Lactobacillus plantarum, Lactobacillus curvatus, Pediococcus pentosaceus and Pediococcus acidilacti, after surviving thermal treatment (70 °C during 60 minutes). Thermotolerant strains were inoculated in sausage batters before cooking in order to determine their effect on color, texture, acceptance and inhibition of Enterobacteria during 12 days at 8 °C. No significant effect of the inoculated strains was detected on color parameters. Textural profile parameters, cohesiveness and resilience, were not affected by the inoculation of thermotolerant lactic acid bacteria, but L. curvatus sausages resulted softer than the rest of the treatments. Samples inoculated with L. curvatus also obtained the lowest scores for the sensory attributes evaluated, with the remaining treatments causing no unfavorable effects on sausage acceptance. There was a reduction in enterobacterial counts after 12 days of cold storage in inoculated samples. The performance of inoculated lactic acid bacteria strains can be explained in a similar way as that of starter cultures in dry-fermented sausages, where the growth in nests impairs other pathogenic microorganisms present in the rest of the sausage, since environmental conditions and the early inoculation of these thermotolerant strains favor them to become the dominant flora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of cost efficient, selective and sustainable chemical processes for production of chiral building blocks is of great importance in synthetic and industrial organic chemistry. One way to reach these objectives is to carry out several reactions steps in one vessel at one time. Furthermore, when this kind of one-pot multi step reactions are catalyzed by heterogeneous chemo- and bio-catalysts, which can be separated from the reaction products by filtration, practical access to chiral small molecules for further utilization can be obtained. The initial reactions studied in this thesis are the two step dynamic kinetic resolution of rac-2-hydroxy-1-indanone and the regioselective hydrogenation of 1,2-indanedione. These reactions are then combined in a new heterogeneously catalyzed one-pot reaction sequence enabling simple recovery of the catalysts by filtration, facilitating simple reaction product isolation. Conclusively, the readily available 1,2-indanedione is by the presented one-pot sequence, utilizing heterogeneous enzyme and transition metal based catalysts, transferred with high regio- and stereoselectivity to a useful chiral vicinal hydroxyl ketone structure. Additional and complementary investigation of homogeneous half-sandwich ruthenium complexes for catalyzing the epimerization of chiral secondary alcohols of five natural products containing additional non-functionalized stereocenters was conducted. In principle, this kind of epimerization reactions of single stereocenters could be utilized for converting inexpensive starting materials, containing other stereogenic centers, into diastereomeric mixtures from which more valuable compounds can be isolated by traditional isolation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to investigate the production of fatty acid ethyl esters from soybean oil in compressed propane using a non-commercial lipase from Yarrowia lipolytica and two commercial ones as catalysts, Amano PS and Amano AY30. The experiments were performed in the temperature range of 35-65 °C. at 50 bar, enzyme concentration of 5 wt%, oil to ethanol molar ratio of 1:6 and 1:9, and solvent to substrates mass ratio of 2:1 and 4:1. The results indicated that low reaction conversions were generally obtained with the use of commercial and non-commercial lipases in pressurized propane medium. On the other hand, the aspects of low solvent to substrates mass ratio and mild temperature and pressure operating conditions used to produce ethyl esters justify further investigations to improve reaction yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common bean (Phaseolus vulgaris L.) is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3). The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco), treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition). The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour). The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above) was used. The concentration of total protein (g.100 g-1 of dry matter) in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter). The in vitro protein digestibility of enzymatically untreated bean flour (control) ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p < 0.05) after the enzyme treatment. The greatest change was observed in the OPNS cultivar treated with protease from Bacillus sp., which increased its digestibility from 54.4% (control treatment) to 81.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emulsion stability, composition, structure and rheology of four different commercial italian salad dressings manufactured with traditional and light formulations were evaluated. According to the results, the fat content ranged from 8% (w/w) (light) to 34% (w/w) (traditional), the carbohydrate concentration varied between 3.8% (w/w) (traditional) and 14.4% (w/w) (light) and the pH was between 3.6-3.9 for all samples. The microscopic and stability analyses showed that the only stable salad dressing was a light sample, which had the smallest droplet size when compared with the other samples. With respect to the rheological behaviour, all the salad dressings were characterized as thixotropic and shear thinning fluids. However, the stable dressing showed an overshoot at relatively low shear rates. This distinct rheological behavior being explained by the differences in its composition, particularly the presence of a maltodextrin network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential health benefits attributed to green tea and its catechins such as antioxidant effects, cancer chemoprevention, and weight loss have led to a huge increase of green tea products in the food market. The objectives of this work were to analyze and compare these products in terms of phenolic contents and in vitro antioxidant capacity including tea bags, dehydrated leaves, and ready-to-drink preparations after standardization of the infusion preparation procedure. Total phenolics content in 1 cup of the different teas varied from 90 to 341 mg of catechin equivalents, and the highest and the lowest values were both those of the ready-to-drink products. Infusions prepared from tea bags had contents varying from 96 to 201 mg.200 mL-1, and there were no significant differences among batches. The DPPH radical scavenging and the Oxygen Radical Absorbing Capacities (ORAC) varied largely among the different tea preparations, from 23 to 131 mmoles of Trolox Equivalents (TE).200 mL-1 (DPPH), and from 1.2 to 5.1 mmoles of TE.200 mL-1 (ORAC), but again there were no differences among infusions or ready-to-drink commercial preparations. However, the antioxidant capacity of ready-to-drink products was partially due to the presence of other non-phenolic compounds such as ascorbic acid

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectinases are enzymes that degrade pectic substances and are widely used in juice and fruit beverages to improve the quality of the process. The objective of this study was to determine the optimum pH and temperature of two samples of commercial pectinases and propose an alternative procedure to determine the residual activity comparing the data with those of the traditional procedure. The pectin methylesterase (PME) activity in Pectinex 100 L Plus and Panzyn Clears was determined by potentiometry. The reaction consisted of 5.00 mg.mL-1 apple pectin, 0.100 mol.L-1 NaCl, and 50 µL enzyme to a total volume of 30 mL. The pectin reaction in the presence of PME in all experiments revealed a first order kinetics. The PME in the two enzyme preparations showed higher activity at pH 4.0 to 4.5 and temperature of 45 ºC. From the results of both procedures ΔV NaOH/Δt and ΔpH/Δt, it was concluded that the inactivation of PME occurred at 75 ºC. The results obtained from the ratio ΔpH/Δt showed good correlation with those obtained from the ratio ΔV NaOH/Δt. In the reaction accompanied by the ratio ΔpH/Δt, the release of H3O+ occurred in the real time reaction.