912 resultados para cellulose pulp
Resumo:
Paged continuously.
Resumo:
Inaug.-Diss.--Erlangen.
Resumo:
Mode of access: Internet.
Resumo:
Bibliographical footnotes.
Resumo:
A new device has been developed to directly measure the bubble loading of particle-bubble aggregates in industrial flotation machines, both mechanical flotation cells as well as flotation column cells. The bubble loading of aggregates allows for in-depth analysis of the operating performance of a flotation machine in terms of both pulp/collection zone and froth zone performance. This paper presents the methodology along with an example showing the excellent reproducibility of the device and an analysis of different operating conditions of the device itself. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The objective of this study is to examine the market valuation of environmental capital expenditure investment related to pollution abatement in the pulp and paper industry. The total environmental capital expenditure of $8.7 billion by our sample firms during 1989-2000 supports the focus on this industry. In order to be capitalized, an asset should be associated with future economic benefits. The existing environmental literature suggests that investors condition their evaluation of the future economic benefits arising from environmental capital expenditure on an assessment of the firms' environmental performance. This literature predicts the emergence of two environmental stereotypes: low-polluting firms that overcomply with existing environmental regulations, and high-polluting firms that just meet minimal environmental requirements. Our valuation evidence indicates that there are incremental economic benefits associated with environmental capital expenditure investment by low-polluting firms but not high-polluting firms. We also find that investors use environmental performance information to assess unbooked environmental liabilities, which we interpret to represent the future abatement spending obligations of high-polluting firms in the pulp and paper industry. We estimate average unbooked liabilities of $560 million for high-polluting firms, or 16.6 percent of market capitalization.
Resumo:
A pilot study of tree rings in a modern mangrove tree (Rhizophora apiculata) from Leizhou Peninsula, northern South China Sea shows that ( 1) the tree-rings are annual; ( 2) the ring widths decrease; and ( 3) their alpha-cellulose delta(13)C values increase from 1982 to 1999 AD, consistent with the trends of annual sea level, salinity and sea surface temperatures in the same period. We propose that such changes were caused by increasingly longer duration of waterlogging in response to sea-level rise. If this is the case, alpha-cellulose delta(13)C in mangrove tree rings can be used as a potential indicator of past sea level fluctuations.
Resumo:
A mini-Tn10:lacZ: kan was inserted into a wild-type strain of Acetobacter xylinus by random transposon mutagenesis, generating a lactose-utilising and cellulose-producing mutant strain designated ITz3. Antibiotic selection plate assays and Southern hybridisation revealed that the lacZ gene was inserted once into the chromosome of strain ITz3 and was stably maintained in non-selective medium after more than 60 generations. The modified strain had, on the average, a 28-fold increase in cellulose production and a 160-fold increase in beta-galactosidase activity when grown in lactose medium. beta-Galactosidase activity is present in either lactose or sucrose medium indicating that the gene is constitutively expressed. Cellulose and beta-galactosidase production by the modified strain was also evaluated in pure and enriched whey substrates. Utilisation of lactose in whey substrate by ITz3 reached 17 g l(-1) after 4 days incubation. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.
Resumo:
Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.
Resumo:
In order to determine the age of adult wild dogs, we compared two methods ( that of Thomson and Rose (TR method) and that of Knowlton and Whittemore (KW method)) of measuring and calculating pulp cavity : tooth width ratios on upper and lower canine teeth from 68 mixed-sex, known-age wild dogs of 9 months to 13 years of age reared at two localities. Although significant relationships ( P = 0.0001) were found between age and pulp cavity ratios by both methods, the TR ratio calculation and measurement showed heteroscedasity in error variance whereas the KW ratios had a more stable error variance and were normally distributed. The KW method also found significant differences between pulp cavity ratios between teeth of the upper and lower jaws ( P < 0.0001) and sex ( P = 0.01) but not geographic origin ( P = 0.1). Regressions and formulae for fitted curves are presented separately for male and female wild dogs. Males show greater variability in pulp cavity decrements with age than do females, suggesting a physiological difference between the sexes. We conclude that the KW method of using pulp cavity as a proportion of tooth width, measured 15 mm from the root tip and averaged over both upper canines, is the more accurate method of estimating the age of adult wild dogs.
Resumo:
Objective To quantify the temperature changes in the dental pulp associated with equine dental procedures using power grinding equipment. Design A matrix experimental design with replication on the same sample was followed to allow the following independent variables to be assessed: horse age (young or old), tooth type (premolar or molar), powered grinding instrument (rotating disc or die grinder), grinding time (15 or 20 seconds) and the presence or absence of water coolant. Procedure Sound premolar and molar teeth from a 6-year-old horse and a 15-year-old horse, which had been removed postmortem, were sectioned parallel to the occlusal plane to allow placement of a miniature thermocouple at the level of the dental pulp. The maximum temperature increase, the time taken to reach this maximum and the cooling time were measured (n=10 in each study). The teeth were placed in a vice and the instrument used on the tooth as per clinical situation. Results Significant differences were recorded for horse age (P < 0.001), instrument type (P < 0.001), grinding time (P < 0.001) and presence or absence of coolant (P < 0.001). There was no significant difference for tooth type. Conclusion Thermal insult to the dental pulp from the use of power instruments poses a significant risk to the tooth. This risk can be reduced or eliminated by appropriate selection of treatment time and by the use of water irrigation as a coolant. The increased dentine thickness in older horses appears to mitigate against thermal injury from frictional heat.
Resumo:
This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-Lanaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm. (C) 2005 Wiley Periodicals, Inc.
Resumo:
It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. (c) 2005 Wiley Periodicals, Inc.