954 resultados para catalytic chemical vapor deposition
Resumo:
Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.
Resumo:
Samples of crystalline basalt from Site 396 B are all more or less altered, usually in strongly zoned patterns. Evidence has been found for several related or independent alteration stages, including (1) minor localized deuteric (amphibole and mixed clay minerals in miarolitic voids); (2) minor widespread nonoxidizing (pyrite on walls of vugs and cracks); (3) localized diffusion-controlled rug filling ("glauconite" in black halos); (4) pervasive low level oxidizing (transformation of titanomagnetite to cation-deficient titanomaghemite); (5) localized diffusion-controlled strongly oxidizing (breakdown of olivine and titanomaghemite in brown zones). Plagioclase and pyroxene are essentially unaltered. Detailed analyses of gray and brown zones in pillow basalts show that low temperature oxidation has proceeded in a step-wise fashion, with the relative stabilities of the igneous minerals controlling the steps. Secondary minerals that crystallized from pore fluids on to the walls of vugs may or may not be related to local alteration of primary phases. During the most intense stage of alteration, brown oxidation zones grew into basalt fragments behind diffusion controlled fronts. The specific reactions and products of this stage differ among the lithologic units at the site. A model is proposed whereby efficient seawater circulation through the pillow units maintains the pH and the concentrations of Mg2+ and SiO2 dissolved at low levels in pore fluids, so that olivine is replaced by hydrous ferric oxides, and Mg and SiO2 are removed from the system. In the massive basalt unit, circulation is somewhat less effective and Mg and SiO2 are retained in smectites. Deposition of authigenic minerals in the sequence saponite/Fe-Mn oxides/phillipsite/calcite in vugs and cracks may reflect the gradual closing of the systems and probably signals the end of localized oxidation in parts of the core. Mineral compositions indicate that most of these deposits formed from seawater at very low temperature.
Resumo:
The sediments of a core of.1.55 m length taken on the windward side of the Cross Bank, Florida Bay, are clearly subdivided into two portions, as shown by grain size analysis: silt-sized particles predominate in the relatively homogeneous lower two thirds of the core. This is succeeded abruptly by a thin layer of sand, containing fragments of Halimeda. They indicate a catastrophic event in the Florida Bay region, because Halimeda does not grow within Florida Bay. Above this layer, the amount of sand decreases at first and then continuously increases right to the present sediment-water-interface. The median and skewness increase simultaneously with the increase in the sand and granule portion. We assume that the changing grain size distribution was determined chiefly by the density of the marine flora: during the deposition of the lower two thirds of the core a dense grass cover acted as a sediment catcher for the fine-grained detritus washed out of the shallow basins of the Florida Bay, and simultaneously prohibited renewed reworking. Similar processes go on today on the surface of most mud banks of Florida Bay. The catastrophic event indicated by the sand layer probably changed the morphology of the bank to such an extent that the sampling point was shifted more to the windward side of the bank. This side is characterized by less dense plant growth. Therefore, less detritus could be caught and the material deposited could be reworked. The pronounced increase in skewness in the upper third of the core certainly indicates a strong washing out of the smaller-sized particles. The sediments are predominantly made up of carbonates, averagely 88.14 percent. The average CaCO3-content is 83.87 percent and the average MgCO3-content amounts to 4.27 percent. The chief carbonate mineral is aragonite making up 60.1 percent of the carbonate portion in the average, followed by high-magnesian calcite (33.8 percent) and calcite (6.1 percent). With increasing grain size the aragonite clearly increases at the cost of high-magnesian calcite in the upper third of the core. Chemically, this is shown by an increase of the CaCO3 : MgCO3-ratio. This increase is mainly caused by the more common occurrence of aragonitic fragments of mollusks in the coarse grain fractions. The bulk of the carbonates is made up of mollusks, foraminifera, ostracods, and - to a much lesser extent - of corals, worm-tubes, coccolithophorids, and calcareous algae, as shown by microscopic investigations. The total amount of the carbonate in the sediments is biogenic detritus with the possible exception of a very small amount of aragonite needles in the clay and fine silt fraction. The individual carbonate components of the gravel and sand fraction can be relatively easy identified as members of a particular animal or plant group. This becomes very difficult in the silt and clay fraction. Brownish aggregates are very common in the coarse and medium silt fraction. It was not always possible to clarify their origin (biogenic detritus, faecal pellets or carbonate particles cemented by carbonates or organic slime, etc.). Organic matter (plant fragments, rootlets), quartz, opal (siliceous sponge needles), and feldspar also occur in the sediments, besides carbonates. The lowermost part of the core has an age of 1365 +/- 90 years, as shown by 14C analysis.
Resumo:
Chemical analyses of North Atlantic D.S.D.P. (Deep Sea Drilling Project) sediments indicate that basal sediments generally contain higher concentrations of Fe, Mn, Mg, Pb, and Ni, and similar or lower concentrations of Ti, Al, Cr, Cu, Zn, and Li than the material overlying them. Partition studies on selected samples indicate that the enriched metals in the basal sediments are usually held in a fashion similar to that in basal sediments from the Pacific, other D.S.D.P. sediments, and modern North Atlantic ridge and non-ridge material. Although, on average, chemical differences between basal sediments of varying ages are apparent, normalization of the data indicates that the processes leading to metal enrichment on the crest of the Mid-Atlantic Ridge appear to have been approximately constant in intensity since Cretaceous times. In addition, the bulk composition of detrital sediments also appears to have been relatively constant over the same time period. Paleocene sediments from site 118 are, however, an exception to this rule, there apparently having been an increased detrital influx during this period. The bulk geochemistry, partitioning patterns, and mineralogy of sediments from D.S.D.P. 9A indicates that post-depositional migration of such elements as Mn, Ni, Cu, Zn, and Pb may have occurred. The basement encountered at the base of site 138 is thought to be a basaltic sill, but the overlying basal sediments are geochemically similar to other metalliferous basal sediments from the North Atlantic. These results, as well as those from site 114 where true oceanic basement was encountered, but where there was an estimated 7 m.y. hiatus between basaltic extrusion and basal sediment deposition, indicate that ridge-crest sediments are not necessarily deposited during active volcanism but can be formed after the volcanism has ceased. The predominant processes for metal enrichment in these deposits and those formed in association with other submarine volcanic features is a combination of shallow hydrothermal activity, submarine weathering of basalt, and the formation of ferromanganese oxides which can scavenge metals from seawater. In addition, it seems as though the formation of submarine metalliferous sediments is not restricted to active-ridge areas.
Resumo:
We study the oxygen reduction reaction (ORR), the catalytic process occurring at the cathode in fuel cells, on Pt layers prepared by electrodeposition onto an Au substrate. Using a nominal Pt layer by layer deposition method previously proposed, imperfect layers of Pt on Au are obtained. The ORR on deposited Pt layers decreases with increasing Pt thickness. In the submonolayer region, however, the ORR activity is superior to that of bulk Pt. Using density functional theory (DFT) calculations, we correlate the observed activity trend to strain, ligand, and ensemble effects. At submonolayer coverage certain atom configurations weaken the binding energies of reaction intermediates due to a ligand and ensemble effect, thus effectively increasing the ORR activity. At higher Pt coverage the activity is governed by a strain effect, which lowers the activity by decreasing the oxidation potential of water. This study is a nice example of how the influence of strain, ligand, and ensemble effects on the ORR can be deconvoluted.
Resumo:
Existing descriptions of bi-directional ammonia (NH3) land–atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission–deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28–67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45–85) Tg N in 2008 to reach 132 (89–179) Tg by 2100.
Resumo:
The effects of fire ( Control burned soil) and two emergency stabilisation techniques (grass Seeding and straw Mulching ) on 20 chemical characteristics were evaluated on 0 – 5 cm top-soils sampled 1, 90, 180 and 365 days after an experimental fi re in a steep shrubland of a temperate-humid region (NW Spain). Most part of pH (in H 2 O and KCl) variance was explained by the sampling date. No clear temporal trends were identi fi able for total soil C and N content, likely due to the large SOM pool in these soils; however, changes on soil δ 13 C were explained by the deposition of 13 C-depleted ashes, followed by its progressive erosion, while those on soil δ 15 N were a consequence of fi re induced N outputs. After the fi re, NH 4 + – N, P, Na, K, Mg, Ca, Mn, Cu, Zn and B concentrations increased, while those of NO 3 − – N, Al, Fe and Co did not vary significantly. Despite a significant decline with time, concentrations of Mg, Ca and Mn at the end of the study were still higher than in unburned soil, while those of K, Cu, Zn and B were similar to the pre-fire levels and those of NH 4 + – N, P and Na were below pre-fire values. Mulching and Seeding treatments for burned soil emergency stabilisation had significant effects on soil δ 15 N and extractable K, Mg and Ca, while data were inconclusive for their possible effects on the extractable Al, Fe and Co