913 resultados para caspase recruitment domain protein 15 gene


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A genomic fragment encoding alpha(APC) and beta(APC) (i.e., alpha and beta units of the allophycocyanin, APC) from Anacystis nidulans UTEX 625 was cloned and sequenced. This fragment, containing a non-coding sequence of 56 nucleotides in between, was then subcloned into the expression vector pMal-c2 downstream from and in frame with the malE gene of E. coli encoding MBP ( maltose binding protein). The fusion protein was purified by amylose affinity chromatography and cleaved by coagulation factor Xa. alpha(APC) and beta(APC) were then separated from MBP and MBP fusion proteins, respectively, and concentrated by membrane centrifugation. The study provides a method to produce recombinant allophycocyanin subunits for biomedical and biotechnological applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A cDNA for a novel T-box containing gene was isolated from the amphioxus Branchiostoma belcheri. A molecular phylogenetic tree constructed from the deduced amino acid sequence of the isolated cDNA indicates that this gene belongs to the T-Brain subfamily. In situ hybridization reveals that the expression is first detected in the invaginating archenteron at the early gastrula stage and this expression is down-regulated at the neurula stage. In early larvae, the expression appears again and transcripts are detected exclusively in the pre-oral pit (wheel organ-Hatschek's pit of the adult). In contrast to the vertebrate counterparts, no transcripts are detected in the brain vesicle or nerve cord throughout the development. These results are interpreted to mean that a role of T-Brain products in vertebrate forebrain development was acquired after the amphioxus was split from the lineage leading to the vertebrates. On the other hand, comparison of the tissue-specific expression domain of T-Brain genes and other genes between amphioxus and vertebrates revealed that the pre-oral pit of amphioxus has several molecular features which are comparable to those of the vertebrate olfactory and hypophyseal placode. (C) 2002 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-alpha) gene and its expression in a cyanobacterium Anabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDC-TNF. The expression of the rhTNF gene in Escherichia coil has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced into Anabaena sg PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with alpha-(32)p labeled hTNF cDNA probes, while the expression of the hTNF gene in Anabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic cyanobacterium Anabaena sp. PCC 7120.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are an ancient family of pattern recognition receptors, which show homology with the Drosophila Toll protein and play key roles in detecting various non-self substances and then initiating and activating immune system. In this report, the full length of the first bivalve TLR (named as CfToll-1) is presented. CfToll-1 was originally identified as an EST (expressed sequence tag) fragment from a cDNA library of Zhikong scallop (Chlamys farreri). Its complete sequence was obtained by the construction of Genome Walker library and 5' RACE (rapid amplification of cDNA end) techniques. The full length cDNA of CfToll-1 consisted of 4308 nucleotides with a polyA tail, encoding a putative protein of 1198 amino acids with a 5' UTR (untranslated region) of 211 bp and a 3'UTR of 500 bp. The predicted amino acid sequence comprised an extracellular domain with a potential signal peptide, nineteen leucine-rich repeats (LRR), two LRR-C-terminal (LRRCT) motifs, and a LRR-N-terminal (LRRNT), followed by a transmembrane segment of 20 amino acids, and a cytoplasmic region of 138 amino acids containing the Toll/IL-1R domain (TIR). The deduced amino acid sequence of CfToll-1 was homologous to Drosophila melanogaster Tolls (DmTolls) with 23-35% similarity in the full length amino acids sequence and 30-54% in the TIR domain. Phylogenetic analysis of CfToll-1 with other known TLRs revealed that CfToll-1 was closely related to DmTolls. An analysis of the tissue-specific expression of the CfToll-1 gene by Real-time PCR showed that the transcripts were constitutively expressed in tissues of haemocyte, muscle, mantle, heart, gonad and gill. The temporal expressions of CfToll-1 in the mixed primary cultured haemocytes were observed after the haemocytes were treated with 1 mu g ml(-1) and 100 ng ml(-1) lipopolysaccharide (LPS), respectively. The expression of CfToll-1 was up-regulated and increased about 2-fold at 6 h with the treatment of 1 mu g ml(-1) LPS. The expression of CfToll-1 was down-regulated with the treatment of 100 ng ml(-1) LPS. The results indicated that the expression of CfToll-1 could be regulated by LPS, and this regulation was dose-dependent. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and plays a crucial role in the innate immune responses as a pattern recognition receptor (PRR). The cDNA of a short type PGRP was cloned from scallop Chlamys farreri (named CfPGRP-SI) by homology cloning with degenerate primers, and confirmed by virtual Northern blots. The full length of CfPGRP-SI cDNA was 1073 bp in length, including a 5 ' untranslated region (UTR) of 59 bp, a 3 ' UTR of 255 bp, and an open reading frame (ORF) of 759 bp encoding a polypeptide of 252 amino acids with an estimated molecular mass of 27.88 kDa and a predicted isoelectric point of 8.69. BLAST analysis revealed that CfPGRP-S1 shared high identities with other known PGRPs. A conserved PGRP domain and three zinc-binding sites were present at its C-terminus. The temporal expression of QPGRP-S1 gene in healthy, Vibrio anguillarum-challenged and Micrococcus lysodeikticus-challenged scallops was measured by RT-PCR analysis. The expression of CfPGRP-S1 was upregulated initially in the first 12 h or 24 h either by M. lysodeikticus or V. anguillarum challenge and reached the maximum level at 24 h or 36 h, then dropped progressively, and recovered to the original level as the stimulation decreased at 72 h. There was no significant difference between V. anguillarum and M. lysodeikticus challenge. The results indicated that the CfPGRP-S1 was a constitutive and inducible acute-phase protein which was involved in the immune response against bacterial infection. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antimicrobial peptides or proteins (AMPs) are proved to be one of the most important humoral factors to resist pathogen infection. As an antimicrobial protein, crustin had been described in invertebrates as a component of the innate immune system. A crustin-like gene (CruFc) was cloned from haemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5'-RACE PCR. The full-length cDNA consists of 523 with 405 bp open reading frame encoding 134 amino acids and the deduced peptide contains a putative signal peptide of 17 amino acids. The sequence also contains a whey-acidic protein (WAP) domain at the C-terminal. Transcripts of CruFc were mainly detected in haemocytes and gill by RT-PCR analysis. In addition, another full-length cDNA named CshFc was also cloned from haemocytes of Chinese shrimp and its inferred amino acid sequence lacks the WAP-type 'four-disulfide core' domain. The fusion proteins containing CruFc and CshFc were, respectively, produced and the antimicrobial assays revealed that the recombinant CruFc could inhibit the growth of grain-positive bacteria in vitro but the recombinant CshFc could not inhibit at the same conditions. The difference of antimicrobial activity between recombinant CruFc and CshFc provides the evidence that the four-disulfide core domain of crustin may play an important role in its biological function. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peroxiredoxin (Prx) is known to be an antioxidant protein that protects the organisms against various oxidative stresses and functions in intracellular signal transduction. A Prx gene was firstly isolated in the crustacean, Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA consists of 942 bp with a 594 bp open reading frame, encoding 198 amino acids. The molecular mass of the deduced amino acid is 22041.17 Da with an estimated pI of 5.17. Sequence comparison showed that Prx of F. chinensis shares 76%, 73% and 72% identity with that of Aedes aegypti, Branchiostoma belcheri tsingtaunese and Drosophila melanogaster, respectively. Northern blot analysis revealed the presence of Prx transcripts of F chinensis in all tissues examined. Real-time PCR analysis indicated that the Prx showed different expression profiles in shrimp hemocytes and hepatopancreas after artificial infection with Vibrio anguillarum. In addition, a fusion protein containing Prx was produced in vitro. LC-ESI-MS analysis showed that four peptide fragments of the recombinant protein were identical to the corresponding sequence of F. chinensis Prx. And the purified recombinant proteins were shown to reduce H2O2 in the presence of dithiothreitol. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lysozyme is a widely distributed hydrolase possessing lytic activity against bacterial peptidoglycan, which enables it to protect the host against pathogenic infection. In the present study, the cDNA of an invertebrate goose-type lysozyme (designated CFLysG) was cloned from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CFLysG consisted of 829 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame (ORF) of 603 bp encoding a polypeptide of 200 amino acid residues with a predicted molecular weight of 21.92 kDa and theoretical isoelectric point of 7.76. The high similarity of CFLysG with goose-type (g-type) lysozymes in vertebrate indicated that CFLysG should be an invertebrate counterpart of g-type lysozyme family, which suggested that the origin of g-type lysozyme preceded the emergence of urochordates and even preceded the emergence of deuterostomes. Similar to most g-type lysozymes, CFLysG possessed all conserved features critical for the fundamental structure and function of g-type lysozymes, such as three catalytic residues (Glu 82, Asp 97, Asp 108). By Northern blot analysis, mRNA transcript of CFLysG was found to be most abundantly expressed in the tissues of gills, hepatopancreas and gonad, weakly expressed in the tissues of haemocytes and mantle, while undetectable in the adductor muscle. These results suggested that CFLysG could possess combined features of both the immune and digestive adaptive lysozymes. To gain insight into the in vitro lytic activities of CFLysG, the mature peptide coding region was cloned into Pichia pastoris for heterogeneous expression. Recombinant CFLysG showed inhibitive effect on the growth of both Gram-positive and Gram-negative bacteria with more potent activities against Gram-positive bacteria, which indicated the involvement of CFLysG in the innate immunity of C. farreri. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antimicrobial peptides are important components of the host innate immune responses by exerting broad-spectrum microbicidal activity against pathogenic microbes. The first mollusk big defensin (designated AiBD) cDNA was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The scallop AiBD consisted of 531 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 122 amino acids. The high similarity of AiBD deduced amino acid sequence with big defensin from Tachypleus tridentatus and Branchiostoma belcheri tsingtaunese indicated that AiBD should be a member of big defensin family. The expression of AiBD in various tissues was measured by using Northern blotting analysis. mRNA transcripts of AiBD could be detected in haemocytes of unchallenged scallops. The temporal expression of AiBD in haemolymph after Vibrio anguilarum challenge was recorded by quantitative real time PCR. The relative expression level of AiBD in haemolymph was up-regulated evenly in the first 8 h, followed by a drastic increase, and increased 131.1-fold at 32 h post-injection. These results indicated that AiBD could be induced by bacterial challenge, and it should participate in the immune responses of A. irradians. Biological activity assay revealed that recombinant AiBD could inhibit the growth of both Gram-positive and Gram-negative bacteria, and also showed strong fungicidal activity towards the expression host. Recombinant expression of AiBD made it possible to further characterize its functions involved in immune responses, and also provided a potential therapeutic agent for disease control in aquaculture. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

C-type lectins are Ca2+-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a T-terminal. untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7-and 4.9-fold at 6 h after injury and 8 h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury heating and the immune response in A. irradians. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA (His) gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cystatins are a superfamily of proteins as reversible inhibitor of cysteine proteinases which play essential roles in a spectrum of physiological and immunological processes In this study, a novel member of Cystatin superfamily was identified from Chinese mitten crab Enocheir sinensis (designated EsCystain) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approaches The full-length cDNA of EsCystatin was of 1486 bp, consisting of a 5'-terminal untranslated region (UTR) of 92 bp, a 3' UTR of 1034 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 360 bp encoded a polypeptide of 120 amino acids with the theoretical isoelectric point of 548 and the predicted molecular weight of 13 39 kDa. A signal Cystatin-like domain (Gly(25) to Lys(112)) was found in the putative amino acid sequences of EsCystatin Similar to other Cystatins, the conserved central Q(70)VVSG(74) motif was located in the Cystatin-like domain of EsCystatin But EsCystatin lacked of signal peptide and disulphide bond. The EsCystatin exhibited homology with the other known Cystatins from invertebrates and higher vertebrates, and it was clustered into Cystatin family 1 in the phylogenetic tree. The mRNA transcripts of EsCystain were mainly expressed in hemolymph, gill, hepatopancreas, gonad and muscle, and also marginally detectable in heart After Listonella anguillarum challenge, the relative expression level of EsCystatin in hemolymph was down-regulated to 0 6-fold (P < 0.05) at 3 h post-challenge. Subsequently, it was up-regulated to 3.0-fold (P < 0.01)at 24 h Afterwards. EsCystatin mRNA transcripts suddenly decreased to original level. After Pichia pastoris GS115 challenge, its mRNA expression level in hemolymph was up-regulated to the peak at 3 h (2 8-fold of that in blank (P < 0 01)) The cDNA fragment encoding the mature peptide of EsCystatin was recombined and expressed in Escherichia coli Rosetta-gami (DE3). The recombinant EsCystatin displayed a promoter inhibitory activity against papain When the concentration of EsCystatin protein was of 300 mu g mL(-1), almost 89% of papain activity could be inhibited. These results collectively suggested that EsCystatin was a novel member of protein in Cystatin family, was a potent inhibitor of papain and involved in immune response versus invading microorganisms. (C) 2010 Elsevier Ltd All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selenium binding proteins (SeBP) represent a family of proteins that are believed to be involved in controlling the oxidation/reduction in many physiological processes. The cDNA of Zhikong Scallop Chlamys farreri selenium binding protein (zSeBP) was cloned by expressed sequence tag (EST) and RACE techniques. The high similarity of zSeBP deduced amino acid sequence with the SeBP in other organisms, such as bird, fish, frog, mosquito, fruit fly, mammalian, and even nematode and microorganism indicated that zSeBP should be a member of SeBP family. The temporal expression of zSeBP in the hemocytes was measured by semi-quantitative RT-PCR after scallops were stimulated by either oxidative stress or microbial challenge. The expression of zSeBP was up-regulated progressively after stimulation, and then dropped gradually to the original level. Meanwhile, malondialdehyde (MDA) measured by the colorimetric method in the microbial challenged scallops increased immediately after scallops was challenged by microbes, and was significantly higher than that in the control scallops. Results indicated that the microbial infection could incense the disorder of oxidation/reduction and may result in high MDA production. The negative correlation between the expression level of zSeBP and the MDA content suggested that zSeBP could play an important role in mediating the anti-oxidation mechanisms and immune response in marine invertebrates. (c) 2005 Published by Elsevier Ltd.