974 resultados para cannabinoid receptor binding assays


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Classical benzodiazepines, for example diazepam, interact with alpha(x)beta(2)gamma(2) GABA(A) receptors, x = 1, 2, 3, 5. Little is known about effects of alpha subunits on the structure of the binding pocket. We studied here the interaction of the covalently reacting diazepam analog 7-Isothiocyanato-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one (NCS compound) with alpha(1)H101Cbeta(2)gamma(2) and with receptors containing the homologous mutation, alpha(2)H101Cbeta(2)gamma(2), alpha(3)H126Cbeta(2)gamma(2) and alpha(5)H105Cbeta(2)gamma(2). This comparison was extended to alpha(6)R100Cbeta(2)gamma(2) receptors as this mutation conveys to these receptors high affinity towards classical benzodiazepines. The interaction was studied at the ligand binding level and at the functional level using electrophysiological techniques. Results indicate that the geometry of alpha(6)R100Cbeta(2)gamma(2) enables best interaction with NCS compound, followed by alpha(3)H126Cbeta(2)gamma(2), alpha(1)H101Cbeta(2)gamma(2) and alpha(2)H101Cbeta(2)gamma(2), while alpha(5)H105Cbeta(2)gamma(2) receptors show little interaction. Our results allow conclusions about the relative apposition of alpha(1)H101 and homologous positions in alpha(2), alpha(3), alpha(5) and alpha(6) with the position occupied by -Cl in diazepam. During this study we found evidence for the presence of a novel site for benzodiazepines that prevents modulation of GABA(A) receptors via the classical benzodiazepine site. The novel site potentially contributes to the high degree of safety to some of these drugs. Our results indicate that this site may be located at the alpha/beta subunit interface pseudo-symmetrically to the site for classical benzodiazepines located at the alpha/gamma interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The urokinase-type plasminogen activator receptor (u-PAR) promotes extracellular matrix degradation, invasion and metastasis. A first objective of this dissertation was to identify cis-elements and trans-acting factors activating u-PAR gene expression through a previously footprinted (–148/–124) promoter region. Mobility shifting experiments on nuclear extracts of a high u-PAR-expressing colon cancer cell line (RKO) indicated Sp1, Sp3 and a factor similar to, but distinct from, AP-2α bound to an oligonucleotide spanning –152/–135. Mutations preventing the binding of the AP-2α-related factor reduced u-PAR promoter activity. In RKO, the expression of a dominant negative AP-2 (AP-2αB) diminished u-PAR promoter activity, protein and u-PAR mediated laminin degradation. Conversely, u-PAR promoter activity in low u-PAR-expressing GEO cells was increased by AP-2αA expression. PMA treatment, which induces u-PAR expression, caused an increased amount of the AP-2α-related factor-containing complex in GEO, and mutations preventing AP-2α-like and Sp1/Sp3 binding reduced the u-PAR promoter stimulation by PMA. In resected colon cancers, u-PAR protein amounts were related to the amount of the AP-2α-related factor-containing complex. In conclusion, constitutive and PMA- inducible u-PAR gene expression and -proteolysis are mediated partly through transactivation via a promoter sequence (–152/435) bound with an AP-2α-related factor and Sp1/Sp3. ^ A second interest of this dissertation was to determine if a constitutively active Src regulates the transcription of the u-PAR gene, since c-src expression increases invasion in colon cancer. Increased u-PAR protein and laminin degradation paralleling elevated Src activity was evident in SW480 colon cancer cells stably expressing a constitutively active Src (Y- c-src527F). Nuclear run-on experiments indicated that this was due largely to transcriptional activation. While transient transfection of SW480 cells with Y-c-src527F induced a u-PAR-CAT-reporter, mutations preventing Sp1-binding to promoter region –152/435 abolished this induction. Mobility shift assays revealed increased Sp1 binding to region –152/135 with nuclear extracts of Src-transfected SW480 cells. Finally, the amounts of endogenous u-PAR in resected colon cancers significantly correlated with Src-activity. These data suggest that u-PAR gene expression and proteolysis are regulated by Src, this requiring the promoter region (–152/–135) bound with Sp1, thus, demonstrating for the first time that transcription factor Sp1 is a downstream effector of Src. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obsessive-compulsive disorder (OCD) is a disabling, mostly chronic, psychiatric condition with significant social and economic impairments and is a major public health issue. However, numerous patients are resistant to currently available pharmacological and psychological interventions. Given that recent animal studies and magnetic resonance spectroscopy research points to glutamate dysfunction in OCD, we investigated the metabotropic glutamate receptor 5 (mGluR5) in patients with OCD and healthy controls. We determined mGluR5 distribution volume ratio (DVR) in the brain of ten patients with OCD and ten healthy controls by using [11C]ABP688 positron-emission tomography. As a clinical measure of OCD severity, the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was employed. We found no significant global difference in mGluR5 DVR between patients with OCD and healthy controls. We did, however, observe significant positive correlations between the Y-BOCS obsession sub-score and mGluR5 DVR in the cortico-striatal-thalamo-cortical brain circuit, including regions of the amygdala, anterior cingulate cortex, and medial orbitofrontal cortex (Spearman's ρ's⩾ = 0.68, p < 0.05). These results suggest that obsessions in particular might have an underlying glutamatergic pathology related to mGluR5. The research indicates that the development of metabotropic glutamate agents would be useful as a new treatment for OCD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two new classes of radiolabeled GRP receptor antagonists are studied and compared with the well-established statine-based receptor antagonist DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (RM2, 1; DOTA:1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Sta:(3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid). The bombesin-based pseudopeptide DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3 (RM7, 2), and the methyl ester DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-OCH3 (ARBA05, 3) analogues are labeled with (111)In and evaluated in vitro in PC-3 cell line and in vivo in PC-3 tumor-bearing nude mice. Antagonist potency was assessed by immunofluorescence-based receptor internalization and Ca(2+) mobilization assays. The conjugates showed good binding affinity, the IC50 value of 2 (3.2 ± 1.8 nM) being 2 and 10 times lower than 1 and 3. Compared to (111)In-1, (111)In-2 showed higher uptake in target tissues such as pancreas (1.5 ± 0.5%IA/g and 39.8 ± 9.3%IA/g at 4 h, respectively), whereas the compounds had similar tumor uptake (11.5 ± 2.4%IA/g and 11.8 ± 3.9%IA/g at 4h, respectively). The displacement of the radioligand in vivo was different in different receptor positive organs and depended on the displacing peptide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE 4'-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time. METHODS CB2 receptor modulation ([35S]GTPγS, cAMP, and β-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS. RESULTS MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and β-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg(-1)) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM). CONCLUSIONS LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proper immune system function is dependent on positive and negative regulation of T cell signaling pathways. Full T cell activation requires sequential signaling through the T cell receptor (TCR), costimulatory molecules and the IL-2 receptor (IL-2R). The IL-2R associated Janus tyrosine kinase 3 (Jak3), as well as Signal transducer and activator of transcription 5 (Stat5), are required for normal T cell function and survival. Constitutive activation of Jak3 and Stat5 have been linked to cancers of hematopoietic origin, including certain lymphomas and leukemias. ^ The production of cAMP by adenylate cyclase has been shown to negatively regulate human TCR mediated cell proliferation. Since cAMP has been shown to negatively regulate T cell activation, we sought to investigate whether crosstalk exists between cAMP and IL-2R signaling. The first objective of this study was to determine the effect of cAMP on the activation of IL-2R signaling molecules Jak3 and Stat5. We found that the potent adenylate cyclase activator, forskolin, inhibited IL-2 activation of Jak3 and Stat5. Indeed, in vitro kinase assays and electrophoretic mobility shift assays verified a loss of Jak3 enzymatic activity and Stat5 DNA binding ability, respectively. Further analysis of IL-2R signaling showed that forskolin treatment reduced IL-2 induced association of the IL-2Rβ and γc chain. ^ Because cAMP activates protein kinase A (PKA), the second objective was to determine the role for PKA in the cAMP directed regulation of IL-2R signaling intermediates. Interestingly, forskolin induced serine phosphorylation of Jak3, suggesting that cAMP can directly regulate Jak3 via activation of a serine/threonine kinase. Indeed, phosphoamino acid analysis revealed that PKA was able to induce Jak3 serine phosphorylation in the human leukemia cell line MT-2. In addition, in vitro kinase assays established that PKA can directly inhibit Jak3 enzymatic activity. Collectively, these data indicate that cAMP negatively regulates IL-2R signaling via various effector molecules by a previously unrecognized mechanism. This new data suggests that the Jak3/Stat5 pathway may be regulated by various pharmacological agents that stimulate cAMP production and thus can be used to uncouple some types of T cell mediated diseases. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Overexpression of the thrombin receptor (Protease-Activated-Receptor-1), PAR-1, in cell lines and tissue specimens correlates with the metastatic potential of human melanoma. Utilizing lentiviral shRNA to stably silence PAR-1 in metastatic melanoma cell lines results in decreased tumor growth and lung metastasis in vivo. Since the use of viral technology is not ideal for clinical therapies, neutral liposomes (DOPC) were utilized as a delivery vehicle for PAR-1 siRNA. Our data suggest that PAR-1 siRNA-DOPC treatment by systemic delivery significantly decreases tumor growth and lung metastasis in nude mice. Concomitant decreases in angiogenic and invasive factors (IL-8, VEGF, MMP-2) were observed in PAR-1 siRNA-DOPC-treated mice. Utilizing a cDNA microarray platform, several novel PAR-1 downstream target genes were identified, including Connexin 43 (Cx-43) and Maspin. Cx-43, known to be involved in tumor cell diapedesis and attachment to endothelial cells, is decreased after PAR-1 silencing. Furthermore, the Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells suggesting transcriptional regulation of Cx-43 by PAR-1. ChIP analysis revealed a reduction in SP-1 and AP-1 binding to the Cx-43 promoter. Moreover, melanoma cell attachment to HUVEC was significantly decreased in PAR-1-silenced cells as well as in Cx-43 shRNA transduced cells. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Maspin, a serine protease inhibitor with tumor-suppressor function, was found to be upregulated after PAR-1 silencing. Our results indicate that PAR-1 transcriptionally regulates Maspin, as the promoter activity was significantly increased after PAR-1 silencing. ChIP analysis revealed that silencing PAR-1 increased binding of Ets and c-Jun to the Maspin promoter. As Maspin was recently found to be a tumor-suppressor in melanoma by reducing the invasive capacity of melanoma cells, invasion assays revealed a decrease in invasion after PAR-1 silencing and in cells transduced with a Maspin expression vector. We propose that PAR-1 is key to the progression and metastasis of melanoma in part by regulating the expression of Cx-43 and Maspin. Taken together, we propose that PAR-1 is an attractive target for the treatment of melanoma.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

$\beta$-adrenergic receptor-mediated activation of adenylate cyclase exhibits an agonist-specific separation between the dose/response curve (characterized by the EC$\sb{50}$) and the dose/binding curve (characterized by the K$\sb{\rm d}$). Cyclase activity can be near-maximal when receptor occupancy is quite low (EC$\sb{50}$ $\ll$ K$\sb{\rm d}$). This separation between the binding and response curves can be explained by the assumption that the rate of cyclase activation is proportional to the concentration of agonist-bound receptors, since the receptor is mobile and can activate more than one cyclase (the Collision Coupling Model of Tolkovsky and Levitzki). Here it is established that agonist binding frequency plays an additional role in adenylate cyclase activation in S49 murine lymphoma cells. Using epinephrine (EC$\sb{50}$ = 10 nM, K$\sb{\rm d}$ = 2 $\mu$M), the rate of cyclase activation decreased by 80% when a small (1.5%) receptor occupancy was restricted (by addition of the antagonist propranolol) to a small number (1.5%) of receptors rather than being proportionally distributed among the cell's entire population of receptors. Thus adenylate cyclase activity is not proportional to receptor occupancy in all circumstances. Collisions between receptor and cyclase pairs apparently occur a number of times in rapid sequence (an encounter); the high binding frequency of epinephrine ensures that discontiguous regions of the cell surface experience some period of agonist-bound receptor activity per small unit time minimizing "wasted" collisions between activated cyclase and bound receptor within an encounter. A contribution of agonist binding frequency to activation is thus possible when: (1) the mean lifetime of the agonist-receptor complex is shorter than the mean encounter time, and (2) the absolute efficiency (intrinsic ability to promote cyclase activation per collision) of the agonist-receptor complex is high. These conclusions are supported by experiments using agonists of different efficiencies and binding frequencies. These results are formalized in the Encounter Coupling Model of adenylate cyclase activation, which takes into explicit account the agonist binding frequency, agonist affinity for the $\beta$-adrenergic receptor, agonist efficiency, encounter frequency and the encounter time between receptor and cyclase. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nicotinic acetylcholine receptor is the prototype ligand-gated ion channel. A number of aromatic amino acids have been identified as contributing to the agonist binding site, suggesting that cation–π interactions may be involved in binding the quaternary ammonium group of the agonist, acetylcholine. Here we show a compelling correlation between: (i) ab initio quantum mechanical predictions of cation–π binding abilities and (ii) EC50 values for acetylcholine at the receptor for a series of tryptophan derivatives that were incorporated into the receptor by using the in vivo nonsense-suppression method for unnatural amino acid incorporation. Such a correlation is seen at one, and only one, of the aromatic residues—tryptophan-149 of the α subunit. This finding indicates that, on binding, the cationic, quaternary ammonium group of acetylcholine makes van der Waals contact with the indole side chain of α tryptophan-149, providing the most precise structural information to date on this receptor. Consistent with this model, a tethered quaternary ammonium group emanating from position α149 produces a constitutively active receptor.