824 resultados para canapa rinforzo fibre naturali legno
Resumo:
A novel distributed amplification scheme for quasi-lossless transmission is presented. The system is studied numerically and shown to be able to strongly reduce signal power variations in comparison with currently employed schemes of similar complexity. As an example, variations of less than 3.1 dB for 100 km distance between pumps and below 0.42 dB for 60 km are obtained when using standard single-mode fibre as the transmission medium with an input signal average power of 0 dBm, and a total pump power of about 1.7 W. © 2004 Optical Society of America.
Resumo:
A long period grating (LPG) fabricated in progressive three-layered (PTL) fibre is described. The grating with a period of 391µm, had dual attenuation bands associated with a particular cladding mode. The dual attenuation bands have been experimentally characterised for their spectral sensitivity to bending, which resulted in the highest sensitivity to bending seen for this particular fibre and temperature. The spectral characteristics of the fibre have been modelled giving good agreement to the experimental data as well as showing that the attenuation bands are both associated with the second order HE/EH2,n cladding mode.
Resumo:
A detailed experimental characterization of the transition process of an initially Gaussian pulse to the asymptotic self-similar parabolic solution in optical fibre amplifiers operating in the normal dispersion regime is performed.
Resumo:
The development of ultra-long (UL) cavity (hundreds of meters to several kilometres) mode-locked fibre lasers for the generation of high-energy light pulses with relatively low (sub-megahertz) repetition rates has emerged as a new rapidly advancing area of laser physics. The first demonstration of high pulse energy laser of this type was followed by a number of publications from many research groups on long-cavity Ytterbium and Erbium lasers featuring a variety of configurations with rather different mode-locked operations. The substantial interest to this new approach is stimulated both by non-trivial underlying physics and by the potential of high pulse energy laser sources with unique parameters for a range of applications in industry, bio-medicine, metrology and telecommunications. It is well known, that pulse generation regimes in mode-locked fibre lasers are determined by the intra-cavity balance between the effects of dispersion and non-linearity, and the processes of energy attenuation and amplification. The highest per-pulse energy has been achieved in normal-dispersion UL fibre lasers mode-locked through nonlinear polarization evolution (NPE) for self-modelocking operation. In such lasers are generated the so-called dissipative optical solitons. The uncompensated net normal dispersion in long-cavity resonatorsusually leads to very high chirp and, consequently, to a relatively long duration of generated pulses. This thesis presents the results of research Er-doped ultra-long (more than 1 km cavity length) fibre lasers mode-locked based on NPE. The self-mode-locked erbium-based 3.5-km-long all-fiber laser with the 1.7 µJ pulse energy at a wavelength of 1.55 µm was developed as a part of this research. It has resulted in direct generation of short laser pulses with an ultralow repetition rate of 35.1 kHz. The laser cavity has net normal-dispersion and has been fabricated from commercially-available telecom fibers and optical-fiber elements. Its unconventional linear-ring design with compensation for polarization instability ensures high reliability of the self-mode-locking operation, despite the use of a non polarization-maintaining fibers. The single pulse generation regime in all-fibre erbium mode-locking laser based on NPE with a record cavity length of 25 km was demonstrated. Modelocked lasers with such a long cavity have never been studied before. Our result shows a feasibility of stable mode-locked operation even for an ultra-long cavity length. A new design of fibre laser cavity – “y-configuration”, that offers a range of new functionalities for optimization and stabilization of mode-locked lasing regimes was proposed. This novel cavity configuration has been successfully implemented into a long-cavity normal-dispersion self-mode-locked Er-fibre laser. In particular, it features compensation for polarization instability, suppression of ASE, reduction of pulse duration, prevention of in-cavity wave breaking, and stabilization of the lasing wavelength. This laser along with a specially designed double-pass EDFA have allowed us to demonstrate anenvironmentally stable all-fibre laser system able to deliver sub-nanosecond high-energy pulses with low level of ASE noise.
Resumo:
We demonstrate a liquid level sensor based on the surrounding medium refractive index (SRI) sensing using of an excessively tilted fibre Bragg grating (ETFBG). The sensor has low thermal cross sensitivity and high SRI responsivity.
Resumo:
A report is presented on the interesting bending effect of cladding mode resonances in fibre Bragg gratings (FBGs). It is observed that a serial of new cladding mode resonances can arise under bending and the new and the original cladding mode resonances have opposite trends in amplitude change and wavelength shift when the curvature varies. The discovery provides an effective new way to discriminate between bend and strain or bend and temperature when using only a single uniform FBG.
Resumo:
We have designed and fabricated a new type of fibre Bragg grating (FBG) with a V-shaped dispersion profile for multi-channel dispersion compensation in communication links.
Resumo:
We describe recent research into devices based on fibre Bragg gratings in polymer optical fibre. Firstly, we report on the inscription of gratings in a variety of microstructured polymer optical fibre: single mode, few moded and multimoded, as well as fibre doped with trans-4-stilbenmethanol. Secondly, we describe research into an electrically tuneable filter using a metallic coating on a polymer fibre Bragg grating. Finally we present initial results from attempts to produce more complex grating structures in polymer fibre: a Fabry-Perot cavity and a phase-shifted grating.
Resumo:
A report is made that the rate at which type IA fibre Bragg gratings may be inscribed is related to the intensity of the UV inscription laser and that these gratings may be written in only a few minutes. Also presented is the model of the refractive index of type IA gratings.
Resumo:
Two different architectures of multiplexers/demultiplexers based on 4×1 and 1×4 configurations are discussed. These architectures are implemented using apodized fibre Bragg gratings as optical filters and optical circulators. The spectral characteristics of the devices for channel separations of 100 GHz and 50 GHz are analysed and their performance is evaluated. Optical switch and cross-connect configurations are also demonstrated.
Resumo:
A compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long-period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre is presented. One of the LPGs is sensitive to both SRI and temperature, whilst the second is sensitive to temperature only.
Resumo:
We study the effect of fibre base and grating profile on the efficiency of ultra-long Raman lasers. We show that for the studied parameters, FBG profile does not affect the performance when operating away from the zero-dispersion wavelength.
Resumo:
We study the impact of the shape of fibre Bragg gratings spectral reflectivity on spectral broadening in a 10 km Raman fibre laser. We show that, at high powers, spectral characteristics are determined by intra-cavity processes rather than by the gratings profile.
Resumo:
We propose a new type of fiber Bragg grating (FBG) with a V-shaped dispersion profile. We demonstrate that such V-shaped FBGs bring advantages in manipulation of optical signals compared to conventional FBGs with a constant dispersion, e.g., they can produce larger chirp for the same input pulsewidth and/or can be used as pulse shapers. Application of the proposed V-shaped FBGs for signal prechirping in fiber transmission is examined. The proposed design of the V-shaped FBG can be easily extended to embrace multichannel devices. © 2007 IEEE.