967 resultados para bimodal size distribution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to characterise the new particle formation events in a subtropical urban environment in the southern hemisphere. The study measured the number concentration of particles and its size distribution in Brisbane, Australia during 2009. The variation of particle number concentration and nucleation burst events were characterised as well as the particle growth rate which was first reported in urban environment of Australia. The annual average NUFP, NAitken and NNuc were 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. Weak seasonal variation in number concentration was observed. Local traffic exhaust emissions were a major contributor of the pollution (NUFP) observed in morning which was dominated by the Aitken mode particles, while particles formed by secondary formation processes contributed to the particle number concentration during afternoon. Overall, 65 nucleation burst events were identified during the study period. Nucleation burst events were classified into two groups, with and without particles growth after the burst of nucleation mode particles observed. The average particle growth rate of the nucleation events was 4.6 nm hr-1 (ranged from 1.79 – 7.78 nm hr-1). Case studies of the nucleation burst events were characterised including i) the nucleation burst with particle growth which is associated with the particle precursor emitted from local traffic exhaust emission, ii) the nucleation burst without particle growth which is due to the transport of industrial emissions from the coast to Brisbane city or other possible sources with unfavourable conditions which suppressed particle growth and iii) interplay between the above two cases which demonstrated the impact of the vehicle and industrial emissions on the variation of particle number concentration and its size distribution during the same day.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent research has described the restructuring of particles upon exposure to organic vapours; however, as yet hypotheses able to explain this phenomenon are limited. In this study, a range of experiments were performed to explore different hypotheses related to carbonaceous particle restructuring upon exposure to organic and water vapours, such as: the effect of surface tension, the role of organics in flocculating primary particles, as well as the ability of vapours to “wet” the particle surface. The change in mobility diameter (dm) was investigated for a range carbonaceous particle types (diesel exhaust, petrol exhaust, cigarette smoke, candle smoke, particles generated in a heptane/toluene flame, and wood smoke particles) exposed to different organic (heptane, ethanol, and dimethyl sulfoxide/water (1:1 vol%) mixture) and water vapours. Particles were first size-selected and then bubbled through an impinger (bubbler) containing either an organic solvent or water, where particles trapped inside rising bubbles were exposed to saturated vapours of the solvent in the impinger. The size distribution of particles was simultaneously measured upstream and downstream from the impinger. A size-dependent reduction in dm was observed when bubbling diesel exhaust, particles generated in a heptane/toluene flame, and candle smoke particles through heptane, ethanol and a dimethyl sulfoxide/water (1:1 vol %) mixture. In addition, the size distributions of particles bubbled through an impinger were broader. Moreover, an increase of the geometric standard deviation (σ) of the size distributions of particles bubbled through an impinger was also found to be size-dependent. Size-dependent reduction in dm and an increase of σ indicate that particles undergo restructuring to a more compact form, which was confirmed by TEM analysis. However, bubbling of these particles through water did not result in a size-dependent reduction in dm, nor in an increase of σ. Cigarette smoke, petrol exhaust, and wood smoke particles did not result in any substantial change in dm, or σ, when bubbled through organic solvents or water. Therefore, size-dependent reduction in the dm upon bubbling through organic solvents was observed only for particles that had a fractal-like structure, whilst particles that were liquid or were assumed to be spherical did not exhibit any reduction in dm. Compaction of fractal-like particles was attributed to the ability of condensing vapours to efficiently wet the particles. Our results also show that the presence of an organic layer on the surface of fractal-like particles, or the surface tension of the condensed liquid do not influence the extent of compaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent findings concerning exhaled aerosol size distributions and the regions in the respiratory tract in which they are generated could have significant implications for human to human spread of lower respiratory tract-specific infections. Even in healthy people, measurable quantities of aerosol are routinely generated from the Lower Respiratory Tract (LRT) during breathing(1-3). We have found that there at least three modes in the exhaled aerosol size distribution of healthy adults(4) (see Figure 1). These modes each have a characteristic size and arise from different parts of the respiratory tract. The respiratory bronchioles produce aerosol during breathing, the larynx during speech and the oral cavity also during speech. The model of the resulting droplet size distribution is therefore called the Bronchial Laryngeal Oral (B.L.O.) tri-modal model of expired aerosol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 m ranged from 2.8×104 part cm-3 to 4.7×104 part cm-3 and from 2.0×104 part cm-3 to 3.5×104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New particle formation (NPF) and growth have been observed in different environments all around the world and NPF affects the environment by forming cloud condensation nuclei (CCN). Detailed characterisation of NPF events in a subtropical urban environment is the main aim of this study. Particle size distribution (PSD) of atmospheric aerosol particles in range 9-414 nm were measured using a Scanning Mobility Particle Sizer (SMPS), within the framework of the “Ultrafine Particles from Traffic Emissions and Children’s Health” (UPTECH) study, which seeks to determine the relationship between exposure to traffic related ultrafine particles and children’s health (http://www.ilaqh.qut. edu.au/Misc/UPTECH%20Home.htm). The UPTECH study includes measurements of air quality, meteorological and traffic parameters in 25 randomly selected state primary school within the Brisbane metropolitan area, in Queensland, Australia. Measurements at 17 schools have been completed so far.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Whilst the compression ignition (CI) engine exhibits many design advantages relative to its spark ignition engine counterpart; such as: high thermal efficiency, fuel economy and low carbon monoxide and hydrocarbon emissions, the issue of Diesel Particulate Matter (DPM) emissions continues to be an unresolved problem for the CI engine. Primarily, this thesis investigates a range of DPM mitigation strategies such as alternative fuels, injection technologies and combustion strategies conducted with a view to determine their impact on the physico-chemical properties of DPM emissions, and consequently to shed light on their likely human health impacts. Regulated gaseous emissions, Nitric oxide (NO), Carbon monoxide (CO), and Hydrocarbons (HCs), were measured in all experimental campaigns, although the major focus in this research program was on particulate emissions...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traffic emissions are considered as a major source of pollutants, particularly ultrafine particles, in the urban environment. There is an increased concern about airborne particles not only because of their environmental effects but also due to their potential adverse health effects on humans. There have been a number of studies related to the number concentration and size distribution of these particles but studies on the chemical composition of aerosols, especially in the school environment, are very limited. Mejia et. al (2011) reviewed studies on the exposure to and impact of air pollutants on school children and found that there were only a handful of studies on this topic. Therefore, the main focus of this research is on an analysis of the chemical composition of airborne particles, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools, as a part of “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH) project. The aim of the present study was to find out the concentrations of different Volatile Organic Compounds (VOCs) in both outdoor and indoor locations from six different schools in Brisbane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological research has consistently shown an association between fine and ultrafine particle concentrations, and increases in both respiratory and cardiovascular morbidity and mortality. These particles, often found in vehicle emissions outside buildings, can penetrate inside via their envelopes and mechanically ventilated systems. Indoor activities such as printing, cooking and cleaning, as well as the movement of building occupants are also an additional source of these particles. In this context, the filtration systems of mechanically ventilated buildings can reduce indoor particle concentrations. Several studies have quantified the efficiency of dry-media and electrostatic filters, but they mainly focused on the particle size range > 300 nm. Some others studied ultrafine particles but their investigations were conducted in laboratories. At this point, there is still only limited information on in situ filter efficiency and an incomplete understanding of filtration influence on I/O ratios of particle concentrations. To help address these gaps in knowledge and provide new information for the selection of appropriate filter types in office building HVAC systems, we aimed to: (1) measure particle concentrations at up and down stream flows of filter devices, as well as outdoor and indoor office buildings; (2) quantify efficiency of different filter types at different buildings; and (3) assess the impact of these filters on I/O ratios at different indoor and outdoor source operation scenarios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sampling of the El Chichón stratospheric cloud in early May and in late July, 1982, showed that a significant proportion of the cloud consisted of solid particles between 2 μm and 40 μm size. In addition, many particles may have been part of larger aggregates or clusters that ranged in size from < 10 μm to > 50 μm. The majority of individual grains were angular aluminosilicate glass shards with various amounts of smaller, adhering particles. Surface features on individual grains include sulfuric acid droplets and larger (0.5 μm to 1 μm) sulfate gel droplets with various amounts of Na, Mg, Ca and Fe. The sulfate gels probably formed by the interaction of sulfur-rich gases and solid particles within the cloud soon after eruption. Ca-sulfate laths may have formed by condensation within the plume during eruption, or alternatively, at a later stage by the reaction of sulfuric acid aerosols with ash fragments within the stratospheric cloud. A Wilson-Huang formulation for the settling rate of individual particles qualitatively agrees with the observed particle-size distribution for a period at least four months after injection of material into the stratosphere. This result emphasizes the importance of particle shape in controlling the settling rate of volcanic ash from the stratosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Clay Minerals Society Source Clay kaolinites, Georgia KGa-1 and KGa-2, have been subjected to particle size determinations by 1) conventional sedimentation methods, 2) electron microscopy and image analysis, and 3) laser scattering using improved algorithms for the interaction of light with small particles. Particle shape, size distribution, and crystallinity vary considerably for each kaolinite. Replicate analyses of separated size fractions showed that in the <2 µm range, the sedimentation/centrifugation method of Tanner and Jackson (1947) is reproducible for different kaolinite types and that the calculated size ranges are in reasonable agreement with the size bins estimated from laser scattering. Particle sizes determined by laser scattering must be calculated using Mie theory when the dominant particle size is less than ∼5 µm. Based on this study of two well-known and structurally different kaolinites, laser scattering, with improved data reduction algorithms that include Mie theory, should be considered an internally consistent and rapid technique for clay particle sizing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stormwater is a potential and readily available alternative source for potable water in urban areas. However, its direct use is severely constrained by the presence of toxic pollutants, such as heavy metals (HMs). The presence of HMs in stormwater is of concern because of their chronic toxicity and persistent nature. In addition to human health impacts, metals can contribute to adverse ecosystem health impact on receiving waters. Therefore, the ability to predict the levels of HMs in stormwater is crucial for monitoring stormwater quality and for the design of effective treatment systems. Unfortunately, the current laboratory methods for determining HM concentrations are resource intensive and time consuming. In this paper, applications of multivariate data analysis techniques are presented to identify potential surrogate parameters which can be used to determine HM concentrations in stormwater. Accordingly, partial least squares was applied to identify a suite of physicochemical parameters which can serve as indicators of HMs. Datasets having varied characteristics, such as land use and particle size distribution of solids, were analyzed to validate the efficacy of the influencing parameters. Iron, manganese, total organic carbon, and inorganic carbon were identified as the predominant parameters that correlate with the HM concentrations. The practical extension of the study outcomes to urban stormwater management is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple experimental apparatus is described in which a wide variety of vapor phase nucleation studies of refractory materials could be performed aboard NASA's KC-135 Research Aircraft. The chief advantage of a microgravity environment for these studies is the expected absence of thermally driven convective motions in the gas. The absence of convection leads to much more accurate knowledge of both the temperature distribution in the system and the time evolution of the refractory vapor concentration as a function of distance from the crucible.The evolution of the apparatus will be described as more experience is gained with the microgravity environment. Such experiments will be used to prepare for similar ones carried out aboard either the shuttle or Space Station where considerably longer duration experiments are possible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc and used concrete is the main waste product of them. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainable benefits. As the mortar, bricks, glass and asphalt present in different constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test and California Bearing Ratio (CBR). Results were compared with those of the standard road materials used in Queensland, Australia and found that ‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ samples are sitting in the margin of the minimum required specifications of base materials while others are lower than that.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small-angle and ultra-small-angle neutron scattering (SANS and USANS), low-pressure adsorption (N2 and CO2), and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales. The techniques were used to gain insight into the nature of the pore structure including pore geometry, pore size distribution and accessible versus inaccessible porosity. Reservoir samples for analysis were taken from currently-active shale gas plays including the Barnett, Marcellus, Haynesville, Eagle Ford, Woodford, Muskwa, and Duvernay shales. Low-pressure adsorption revealed strong differences in BET surface area and pore volumes for the sample suite, consistent with variability in composition of the samples. The combination of CO2 and N2 adsorption data allowed pore size distributions to be created for micro–meso–macroporosity up to a limit of �1000 Å. Pore size distributions are either uni- or multi-modal. The adsorption-derived pore size distributions for some samples are inconsistent with mercury intrusion data, likely owing to a combination of grain compression during high-pressure intrusion, and the fact that mercury intrusion yields information about pore throat rather than pore body distributions. SANS/USANS scattering data indicate a fractal geometry (power-law scattering) for a wide range of pore sizes and provide evidence that nanometer-scale spatial ordering occurs in lower mesopore–micropore range for some samples, which may be associated with inter-layer spacing in clay minerals. SANS/USANS pore radius distributions were converted to pore volume distributions for direct comparison with adsorption data. For the overlap region between the two methods, the agreement is quite good. Accessible porosity in the pore size (radius) range 5 nm–10 lm was determined for a Barnett shale sample using the contrast matching method with pressurized deuterated methane fluid. The results demonstrate that accessible porosity is pore-size dependent.