977 resultados para bee colonies
Resumo:
Mischocyttarus cassununga, a primitively eusocial Brazilian wasp, commonly found in urban environments, is an interesting model for studies on the evolution of social behaviour in hymenopteran insects. In this study, we constructed a microsatellite-enriched genomic library and presented primers for 18 microsatellite loci. For the analysis, 20 unrelated females were screened and all loci obtained were polymorphic. PCR amplification revealed from 3 (Mcas5b) to 17 (Mcas53b) alleles per locus (). We detected the levels of observed (H (o)) and expected (H (e)) heterozygosities ranging from 0.150 to 0.950 and 0.261 to 0.920, respectively. The polymorphic information content ranged from 0.238 to 0.915, averaging 0.680. All loci were in Hardy-Weinberg equilibrium and linkage disequilibrium was not detected after sequential Bonferroni correction (P > 0.05). These molecular markers will allow further studies on sociogenetic structure, extensive population genetic analysis and diversity of M. cassununga and other Mischocyttarini species.
Resumo:
Complementary sex determination in Hymenoptera implies that heterozygosity at the sex locus leads to the development of diploid females, whereas hemizygosity results in haploid males. Diploid males can arise through inbreeding. In social species, these pose a double burden on colony fitness, from significant reduction in its worker force and through being less viable and fertile than haploid males. Apart from being "misfits", diploid males are of interest to assess molecular correlates for possibly ploidy-related bionomic differences. Herein, we generated suppression subtractive cDNA libraries from newly emerged haploid and diploid males of the stingless bee Melipona quadrifasciata to enrich for differentially expressed genes. Gene Ontology classification revealed that in haploid males more DEGs were related to stress responsiveness, biosynthetic processes, reproductive processes and spermatogenesis, whereas in diploid ones differentially expressed genes were associated with cellular organization, nervous system development and amino acid transport were prevalent. Furthermore, both libraries contained over 40 % ESTs representing possibly novel transcripts. Quantitative RT-PCR analyses confirmed the differential expression of a representative DEG set in newly emerged males. Several muscle formation and energy metabolism-related genes were under-expressed in diploid males. On including 5-day-old males in the analysis, changes in transcript abundance during sexual maturation were revealed.
Resumo:
Melipona scutellaris Latreille has great economic and ecological importance, especially because it is a pollinator of native plant species. Despite the importance of this species, there is little information about the conservation status of their populations. The objective of this study was to assess the diversity in populations of M. scutellaris coming from a Semideciduous Forest Fragment and an Atlantic Forest Fragment in the Northeast Brazil, through geometric morphometric analysis of wings in worker bees. In each area, worker bees were collected from 10 colonies, 10 workers per colony. To assess the diversity on the right wings of worker bees, 15 landmarks were plotted and the measures were used in analysis of variance and multivariate analysis, principal component analysis, discriminant analysis and clustering analysis. There were significant differences in the shape of the wing venation patterns between colonies of two sites (Wilk's lambda = 0.000006; p < 0.000001), which is probably due to the geographical distance between places of origin which impedes the gene flow between them. It indicates that inter and intrapopulation morphometric variability exists (p < 0.000001) in M. scutellaris coming from two different biomes, revealing the existence of diversity in these populations, which is necessary for the conservation of this bee species.
Resumo:
The spatial and temporal distribution of organisms is a fundamental aspect of biological communities. The present study focused on three remnants of arboreal Caatinga in northeastern Brazil between May, 2009 and April, 2010. A total of 627 euglossine males were captured in traps baited with artificial aromatic compounds. The specimens belonged to 14 species and four genera: Euglossa Latreille, Eulaema Lepeletier, Eufriesea Cockerell, and Exaerete Hoffmannsegg. Eulaema nigrita Lepeletier (41.6), Euglossa carolina Nem,sio (15.3%), Eulaema marcii Nem,sio (13.6%), and Euglossa melanotricha Moure (12.8%) were the most common species sampled. The distribution of collected specimens per fragment was as follows: BraA(0)na (280 ha)-259 individuals belonging to 14 species; Cambui (179 ha)-161 individuals from eight species; and Pindoba (100 ha)-207 individuals represented by seven species. BraA(0)na had the highest diversity (H'aEuro parts per thousand= 1.91) and estimated species richness. The largest fragment was the main source of the observed variation in species richness and abundance, indicating a non-random pattern of spatial distribution. The analysis of environmental factors indicated that seasonal variation in these factors was the principal determinant of species occurrence and abundance.
Resumo:
African honey bees, introduced to Brazil in 1956, rapidly dominated the previously introduced European subspecies. To better understand how hybridization between these different types of bees proceeded, we made geometric morphometric analyses of the wing venation patterns of specimens resulting from crosses made between Africanized honey bees (predominantly Apis mellifera scutellata) and Italian honey bees (A. mellifera ligustica) from 1965 to 1967, at the beginning of the Africanization process, in an apiary about 150 km from the original introduction site. Two virgin queens reared from an Italian parental were instrumentally inseminated with semen from drones from an Africanized parental. Six F-1 queens from one of these colonies were open mated with Africanized drones. Resultant F-1 drones were backcrossed to 50 Italian and 50 Africanized parental queens. Five backcross workers were collected from each of eight randomly selected colonies of each type of backcross (N = 5 bees x 8 colonies x 2 types of backcrosses). The F-1 progeny (40 workers and 30 drones) was found to be morphologically closer to the Africanized than to the European parental (N = 20 drones and 40 workers, each); Mahalanobis square distances = 21.6 versus 25.8, respectively, for the workers, and 39.9 versus 46.4, respectively, for the drones. The worker progenies of the backcrosses (N = 40, each) were placed between the respective parental and the F-1 progeny, although closer to the Africanized than to the Italian parentals (Mahalanobis square distance = 6.2 versus 12.1, respectively). Consequently, the most common crosses at the beginning of the Africanization process would have generated individuals more similar to Africanized than to Italian bees. This adds a genetic explanation for the rapid changes in the populational morphometric profile in recently colonized areas. Africanized alleles of wing venation pattern genes are apparently dominant and epistatic.
Resumo:
We investigated whether Melipona quadrifasciata worker mandibular gland secretions contribute directly to their cuticular hydrocarbon profile. The mandibular gland secretion composition and cuticular surface compounds of newly emerged worker bees, nurse bees, and foragers were determined by gas chromatography and mass spectrometry and compared. Both the mandibular gland secretions and the cuticular surface compounds of all worker stages were found to be composed almost exclusively of hydrocarbons. Although the relative proportion of hydrocarbons from the cuticular surface and gland secretion was statistically different, there was a high similarity in the qualitative composition between these structures in all groups of bees.
Resumo:
The hybrid created from the crossbreeding of European and African bees, known as the Africanised bee, has provided numerous advantages for current beekeeping. However, this new species exhibits undesirable behaviours, such as colony defence instinct and a propensity to attack en masse, which can result in serious accidents. To date, there is no effective treatment for cases of Africanised bee envenomation. One promising technique for developing an efficient antivenom is the use of phage display technology, which enables the production of human antibodies, thus avoiding the complications of serum therapy, such as anaphylaxis and serum sickness. The aim of this study was to produce human monoclonal single-chain Fv (scFv) antibody fragments capable of inhibiting the toxic effects of Africanised bee venom. We conducted four rounds of selection of antibodies against the venom and three rounds of selection of antibodies against purified melittin. Three clones were selected and tested by enzyme-linked immunosorbent assay to verify their specificity for melittin and phospholipase A2. Two clones (C5 and C12) were specific for melittin, and one (A7) was specific for phospholipase A2. In a kinetic haemolytic assay, these clones were evaluated individually and in pairs. The A7-C12 combination had the best synergistic effect and was chosen to be used in the assays of myotoxicity inhibition and lethality. The A7-C12 combination inhibited the in vivo myotoxic effect of the venom and increased the survival of treated animals.
Resumo:
Flight activity of foragers of four colonies of Plebeia remota (Holmberg, 1903) was registered from December 1998 to December 1999, using an automated system (photocells and PLC system). The colonies originated from two different regions: Cunha, state of Sao Paulo, and Prudentopolis, state of Parana, Brazil. Flight activity was influenced by different climatic factors in each season. In the summer, the intensity of the correlations between flight activity and climatic factors was smaller than in the other seasons. During the autumn and winter, solar radiation was the factor that most influenced flight activity, while in the spring, this activity was influenced mainly by temperature. Except in the summer, the various climatic factors similarly influenced flight activity of all of the colonies. Flight activity was not affected by geographic origin of the colonies. Information concerning seasonal differences in flight activity of P. remota will be useful for prediction of geographic distribution scenarios under climatic changes.
Resumo:
Division of labor among workers is common in insect societies and is thought to be important in their ecological success. In most species, division of labor is based on age (temporal castes), but workers in some ants and termites show morphological specialization for particular tasks (physical castes). Large-headed soldier ants and termites are well-known examples of this specialization. However, until now there has been no equivalent example of physical worker subcastes in social bees or wasps. Here we provide evidence for a physical soldier subcaste in a bee. In the neotropical stingless bee Tetragonisca angustula, nest defense is performed by two groups of guards, one hovering near the nest entrance and the other standing on the wax entrance tube. We show that both types of guards are 30% heavier than foragers and of different shape; foragers have relatively larger heads, whereas guards have larger legs. Low variation within each subcaste results in negligible size overlap between guards and foragers, further indicating that they are distinct physical castes. In addition, workers that remove garbage from the nest are of intermediate size, suggesting that they might represent another unrecognized caste. Guards or soldiers are reared in low but sufficient numbers (1-2% of emerging workers), considering that <1% usually perform this task. When challenged by the obligate robber bee Lestrimelitta limao, an important natural enemy, larger workers were able to fight for longer before being defeated by the much larger robber. This discovery opens up opportunities for the comparative study of physical castes in social insects, including the question of why soldiers appear to be so much rarer in bees than in ants or termites.
Resumo:
The endemic stingless honey-making bee Melipona (Melikerria) insularissp.n. on Coiba and Rancheria Islands in Pacific Panama is described, together with the proposed sister species, M. ambigua sp.n. from northeast Colombia. The Coiba Island group and Panama mainland were surveyed, yielding one meliponine endemic (M. insularissp.n.) and six meliponine genera and species. The poor Coiba fauna of amphibians and birds corresponds to the poor social bee fauna and suggests habitat barriers generally precluded recolonization from the mainland during glacial periods. Many animals became extinct, yet some remain as relicts. Melipona insularissp.n. was isolated on accreted terranes of Coiba rainforest in the Panama microplate. Morphology suggests that M. insularissp.n. is not a direct descendant of the San Blas-E. Panama endemic Melikerria, M. triplaridis. A phylogenetic hypothesis corroborates disjunct distributions. Rainforest endemics such as Peltogyne purpurea (Fabaceae) and Ptilotrigona occidentalis (Apidae, Meliponini) also occur as relictual, disjunct populations in Central and South America. These may have been isolated before accelerated biotic exchange began 2.4 Ma. Our work supports the geological findings of both a volcanic arc and the San Blas massif providing a substantial bridge for Melikerria from Colombia and Panama in Eocene to Miocene times. We suggest there have been taxon cycles permitting recolonization during glaciations, whereby colonies of M. insularissp.n. were able to recolonize Rancheria, a 250 ha island, 2 km from Coiba. However, rafting colonies nesting in trees, carried on vegetation mats, may have produced founding populations of Melipona in Central America and on oceanic islands such as Coiba.
Resumo:
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.
Resumo:
Native bees are important providers of pollination services, but there are cumulative evidences of their decline. Global changes such as habitat losses, invasions of exotic species and climate change have been suggested as the main causes of the decline of pollinators. In this study, the influence of climate change on the distribution of 10 species of Brazilian bees was estimated with species distribution modelling. We used Maxent algorithm (maximum entropy) and two different scenarios, an optimistic and a pessimistic, to the years 2050 and 2080. We also evaluated the percentage reduction of species habitat based on the future scenarios of climate change through Geographic Information System (GIS). Results showed that the total area of suitable habitats decreased for all species but one under the different future scenarios. The greatest reductions in habitat area were found for Melipona bicolor bicolor and Melipona scutellaris, which occur predominantly in areas related originally to Atlantic Moist Forest. The species analysed have been reported to be pollinators of some regional crops and the consequence of their decrease for these crops needs further clarification. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Bee venom (BV) allergy is potentially dangerous for allergic individuals because a single bee sting may induce an anaphylactic reaction, eventually leading to death. Currently, venom immunotherapy (VIT) is the only treatment with long-lasting effect for this kind of allergy and its efficiency has been recognized worldwide. This therapy consists of subcutaneous injections of gradually increasing doses of the allergen. This causes patient lack of compliance due to a long time of treatment with a total of 30-80 injections administered over years. In this article we deal with the characterization of different MS-PLGA formulations containing BV proteins for VIT. The PLGA microspheres containing BV represent a strategy to replace the multiple injections, because they can control the solute release. Physical and biochemical methods were used to analyze and characterize their preparation. Microspheres with encapsulation efficiencies of 49-75% were obtained with a BV triphasic release profile. Among them, the MS-PLGA 34 kDa-COOH showed to be best for VIT because they presented a low initial burst (20%) and a slow BV release during lag phase. Furthermore, few conformational changes were observed in the released BV. Above all, the BV remained immunologically recognizable, which means that they could continuously stimulate the immune system. Those microspheres containing BV could replace sequential injections of traditional VIT with the remarkable advantage of reduced number of injections. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers. Results Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes. Conclusions The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes.
Resumo:
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.