964 resultados para architectonic configuration
Resumo:
In this paper, the design and implementation of a single shared bus, shared memory multiprocessing system using Intel's single board computers is presented. The hardware configuration and the operating system developed to execute the parallel algorithms are discussed. The performance evaluation studies carried out on Image are outlined.
Resumo:
1. The electric field strength between coplanar electrodes is calculated employing "conformal transformations." The electron multiplication factor is then computed in the nonuniform field region. These calculations have been made for different gap lengths, voltages, and also for different gases and gas pressures. The configuration results in a curved discharge path. It is found that the electron multiplication is maximum along a particular flux line and the prebreakdown discharge is expected to follow this flux line. Experimental tubes incorporating several coplanar gaps have been fabricated. Breakdown voltages have been measured for various discharge gaps and also for various gases such as xenon, helium, neon, argon, and neon-argon mixture (99.5:0.5) at different filling pressures. The variation of breakdown voltage with pressure and gap length is discussed. The observed discharge paths are curved and this is in agreement with theoretical results. A few experimental single-digit coplanar gas-discharge displays (CGDD's) with digit height of 5 cm have been fabricated and dependence of their characteristics on various parameters, including spacing between top glass plate and bottom substrate, have been studied.
Resumo:
The interactions of metallo derivatives of macrocyclic tetrapyrrole pigments, pheophytin a (pheo), phthalocyanin (phth), and tetraphenylporphyrin (TPP) with sym-trinitrobenzene (TNB) have been studied with use of spectroscopic methods. These macrocyles form 1:l molecular complexw with the acceptor. The association constants (K) for the interactions follow the decreasing order of binding as pheo > phth > TPP. The divalent metal ions influence the values of K for the various metallo TPP derivatives, and the relative order of stabilities decrease as Co > Cu = VO > Ni > Zn. The stereochemistry of M(TPP) and the electronic configuration of the metal ions are shown to contribute to the magnitudes of K. The acceptor strongly quenches the fluorescence of the metallo macrocycles, and the quenching constant decreases as pheo > phth > TPP. The formation of exciplexes is postulated on the basis of the rate of bimolecular quenching constants and solvent effects.
Resumo:
Pin-loaded holes commonly occur in engineering structures. However, accurate analysis of such holes presents formidable difficulties because of the load-dependent contact of the pin with the plate. Significant progress has recently been achieved in the analysis of holes in isotropic plates. This paper develops a simple and accurate method for the partial contact analysis of pin-loaded holes in composites. The method is based on an inverse formulation that seeks to determine loads in a given contact-separation configuration. A unified approach for all types of fit was used. Continuum solutions were obtained for infinitely large plates of various typical orthotropic properties with holes loaded by smooth rigid pins. These solutions were then compared with those for isotropic plates. The effects of orthotropy and the type of fit were studied through load-contact relationships, distribution of stresses and displacements, and their variation with load. The results are of direct relevance to the analysis and design of pin joints in composite plates.
Resumo:
The stability characteristics of a Helmholtz velocity profile in a stably stratified, compressible atmosphere in the presence of a lower boundary are studied. A jump in the Brunt–Väisälä frequency is introduced and the level at which this jump occurs is assumed to be different from the shear zone, to simulate sharp temperature discontinuities in the atmosphere. The results are compared with those of Pellacani, Tebaldi, and Tosi and Lindzen and Rosenthal. In the present configuration, new unstable modes with larger growth rates are found. The wavelengths of the most unstable gravity waves for the parameters pertaining to observed cases of clear air turbulence agree quite closely with the experimental values. Physics of Fluids is copyrighted by The American Institute of Physics
Resumo:
A pressed-plate Fe electrode for alkalines storage batteries, designed using a statistical method (fractional factorial technique), is described. Parameters such as the configuration of the base grid, electrode compaction temperature and pressure, binder composition, mixing time, etc. have been optimised using this method. The optimised electrodes have a capacity of 300 plus /minus 5 mA h/g of active material (mixture of Fe and magnetite) at 7 h rate to a cut-off voltage of 8.86V vs. Hg/HgO, OH exp 17 ref.
Resumo:
With many innovations in process technology, forging is establishing itself as a precision manufacturing process: as forging is used to produce complex shapes in difficult materials, it requires dies of complex configuration of high strength and of wear-resistant materials. Extensive research and development work is being undertaken, internationally, to analyse the stresses in forging dies and the flow of material in forged components. Identification of the location, size and shape of dead-metal zones is required for component design. Further, knowledge of the strain distribution in the flowing metal indicates the degree to which the component is being work hardened. Such information is helpful in the selection of process parameters such as dimensional allowances and interface lubrication, as well as in the determination of post-forging operations such as heat treatment and machining. In the presently reported work the effect of aperture width and initial specimen height on the strain distribution in the plane-strain extrusion forging of machined lead billets is observed: the distortion of grids inscribed on the face of the specimen gives the strain distribution. The stress-equilibrium approach is used to optimise a model of flow in extrusion forging, which model is found to be effective in estimating the size of the dead-metal zone. The work carried out so far indicates that the methodology of using the stress-equilibrium approach to develop models of flow in closed-die forging can be a useful tool in component, process and die design.
Resumo:
In this paper, we present results on water flow past randomly textured hydrophobic surfaces with relatively large surface features of the order of 50 µm. Direct shear stress measurements are made on these surfaces in a channel configuration. The measurements indicate that the flow rates required to maintain a shear stress value vary substantially with water immersion time. At small times after filling the channel with water, the flow rates are up to 30% higher compared with the reference hydrophilic surface. With time, the flow rate gradually decreases and in a few hours reaches a value that is nearly the same as the hydrophilic case. Calculations of the effective slip lengths indicate that it varies from about 50 µm at small times to nearly zero or “no slip” after a few hours. Large effective slip lengths on such hydrophobic surfaces are known to be caused by trapped air pockets in the crevices of the surface. In order to understand the time dependent effective slip length, direct visualization of trapped air pockets is made in stationary water using the principle of total internal reflection of light at the water-air interface of the air pockets. These visualizations indicate that the number of bright spots corresponding to the air pockets decreases with time. This type of gradual disappearance of the trapped air pockets is possibly the reason for the decrease in effective slip length with time in the flow experiments. From the practical point of usage of such surfaces to reduce pressure drop, say, in microchannels, this time scale of the order of 1 h for the reduction in slip length would be very crucial. It would ultimately decide the time over which the surface can usefully provide pressure drop reductions. ©2009 American Institute of Physics
Resumo:
Transmission loss of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber, i.e., the side wall or the face of the chamber, are analyzed here based on the Green's function of a rectangular cavity with homogeneous boundary conditions. The rectangular chamber Green's function is expressed in terms of a finite number of rigid rectangular cavity mode shapes. The inlet and outlet ports are modeled as uniform velocity pistons. If the size of the piston is small compared to wavelength, then the plane wave excitation is a valid assumption. The velocity potential inside the chamber is expressed by superimposing the velocity potentials of two different configurations. The first configuration is a piston source at the inlet port and a rigid termination at the outlet, and the second one is a piston at the outlet with a rigid termination at the inlet. Pressure inside the chamber is derived from velocity potentials using linear momentum equation. The average pressure acting on the pistons at the inlet and outlet locations is estimated by integrating the acoustic pressure over the piston area in the two constituent configurations. The transfer matrix is derived from the average pressure values and thence the transmission loss is calculated. The results are verified against those in the literature where use has been made of modal expansions and also numerical models (FEM fluid). The transfer matrix formulation for yielding wall rectangular chambers has been derived incorporating the structural–acoustic coupling. Parametric studies are conducted for different inlet and outlet configurations, and the various phenomena occurring in the TL curves that cannot be explained by the classical plane wave theory, are discussed.
Resumo:
A switched DC voltage three level NPC is proposed in this paper to eliminate capacitor balancing problems in conventional three-level Neutral Point Clamped (NPC) inverter. The proposed configuration requires only one DC link with a voltage V-dc/2, where V-dc is the DC link voltage in a onventional NPC inverter. To get rated DC link voltage (V-dc), the voltage source is alternately onnected in parallel to one of the two series capacitors using two switches and two diodes with device voltage rating of V-dc/2. The frequency at which the voltage source is switched is independent and will not affect the operation of NPC inverter. The switched voltage source in this configuration balances the capacitors automatically. The proposed configuration can also be used as a conventional two level inverter in lower modulation range, thereby increases the reliability of the drive system. A space vector based PWM scheme is used to verify this proposed topology.
Resumo:
This study investigated questions related to half-occlusion processing in human stereoscopic vision: (1) How does the depth location of a half-occluding figure affect the depth localization of adjacent monocular objects? (2) Is three-dimensional slant around vertical axis (geometric effect) affected by half-occlusion constraints? and (3) How the half-occlusion constraints and surface formation processes are manifested in stereoscopic capture? Our results showed that the depth localization of binocular objects affects the depth localization of discrete monocular objects. We also showed that the visual system has a preference for a frontoparallel surface interpretation if the half-occlusion configuration allows multiple interpretation alternatives. When the surface formation was constrained by textures, our results showed that a process of rematching spreading determines the resulting perception and that the spreading can be limited by illusory contours that support the presence of binocularly unmatched figures. The unmatched figures could be present, if the inducing figures producing the illusory surface contained binocular image differences that provided cues for quantitative da Vinci stereopsis. These findings provide evidence of the significant role of half-occlusions in stereoscopic processing.
Resumo:
The visual systems of humans and animals represent physical reality in a modified way, depending on the specific demands that the species in question has for survival. The ability to perceive visual illusions is found in independently evolved visual systems, from honeybees to humans. In humans, the ability emerges early, at the age of four months. Thus the perception of illusion is likely to reflect visual processes of fundamental importance for object perception in natural vision. The experiments reported in this thesis employed various modifications of the Kanizsa triangle, a drawn configuration composed of three black disks with missing sectors on a white background. The sectors appear to form the tips of a triangle. The visual system completes the physically empty area between the disks, generally called inducers, with giving the perception of an illusory triangle. The illusory triangle consists of an illusory surface bounded by illusory contours; the triangle appears brighter than and to lie above the background. If the sectors are coloured, the colour fills the illusory area, a phenomenon known as neon colour spreading . We investigated spatial limitations on the perception of Kanizsa-type illusions and how other stimuli and viewing parameters affected these limitations. We also studied complex configurations thick, bent, mobile and chromatic inducers - to determine whether illusions combining several attributes can be perceived. The results suggest that the visual system is highly effective in completing a percept. The perception of an illusory figure is spatially scale invariant when perceived at threshold. The processing time and the number of fixations modify the percept, making the perception of the illusion more probable in various viewing conditions. Furthermore, the fact that the illusion can be perceived when only one inducer is physically present at any given moment indicates the potential of single inducers. Apparently, modelling illusory figure perception will require a combination of low-level, local processes and higher-level integrative processes. Our studies with stimuli combining several attributes relevant to object perception demonstrate that the perception of an illusory figure is flexible and is maintained also when it contains colour and volume and when shown in movement. All in all, the results confirm the assumed importance of the visual processes related with the perception of illusory figures in everyday viewing. This is indicated by the variety of inducer modifications that can be made without destroying the percept. Furthermore, the illusion can acquire additional attributes from such modifications. Due to individual differences in the perception of illusory figures, universal values for absolute performance are not always meaningful, but stable trends and general relations do exist.
Resumo:
Onboard spacecraft computing system is a case of a functionally distributed system that requires continuous interaction among the nodes to control the operations at different nodes. A simple and reliable protocol is desired for such an application. This paper discusses a formal approach to specify the computing system with respect to some important issues encountered in the design and development of a protocol for the onboard distributed system. The issues considered in this paper are concurrency, exclusiveness and sequencing relationships among the various processes at different nodes. A 6-tuple model is developed for the precise specification of the system. The model also enables us to check the consistency of specification and deadlock caused due to improper specification. An example is given to illustrate the use of the proposed methodology for a typical spacecraft configuration. Although the theory is motivated by a specific application the same may be applied to other distributed computing system such as those encountered in process control industries, power plant control and other similar environments.
Resumo:
We report a detailed and full computational investigation on the hydrovinylation reaction of styrene with the Ni(II)-phospholane catalytic system, which was originally presumed to proceed through a cationic mechanism involving a nickel hydride intermediate. The following general features emerge from this study on a specific catalyst complex that was found to give quantitative yield and moderate selectivity: (a) the activation barrier for the initiation (18.8 kcal/mol) is higher than that for the reaction due to a low-lying square-planar pentenyl chelate intermediate originating from a Ni(II)-allyl catalyst precursor. Consequently there is an induction period for the catalysis; (b) the exit of product from the catalyst is via a β-H-transfer step instead of the usual β-H elimination pathway, which has a very high activation energy due to a trans effect of the phospholane ligand; (c) the turnover-limiting and enantio- determining transition state is also the β-H-transfer; (d) because of the absence of a hydride intermediate, the unwanted isomerization of the product is prevented; (e) since the enantio-discrimination is decided at the H-transfer stage itself, the configuration of the product in a catalytic cycle influences the enantioselectivity in the subsequent cycle; (f) the trans effect of the sole strong ligand in the d8 square-planar Ni(II), the stability of the η3-benzyl intermediate, and the availability of three coordination sites enable regioselective hydrovinylation over the possible oligomerization/polymerization of the olefin substrates and linear hydrovinylation. This work has also confirmed the previously recognized role of the hemilabile group at various stages in the mechanism.
Resumo:
The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.