883 resultados para applications in logistics
Resumo:
• Premise of the study: Here we propose a staining protocol using TBO and Ruthenium red in order to reliably identify secondary compounds in the leaves of some species of Myrtaceae. • Methods and results: Leaves of 10 species representing 10 different genera of Myrtaceae were processed and stained using five different combinations of Ruthenium red and TBO. Optimal staining conditions were determined as 1 min of Ruthenium red (0.05% aqueous) and 45 sec of TBO (0.1% aqueous). Secondary compounds clearly identified under this treatment include mucilage in mesophyll, polyphenols in cuticle, lignin in fibers and xylem, tannins and carboxylated polysaccharides in epidermis and pectic substances in primary cell walls. • Conclusions: Potential applications of this protocol include systematic, phytochemical and ecological investigations in Myrtaceae. It might be applicable to other plant families rich in secondary compounds and could be used as preliminary screening method for extraction of these elements.
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
The Haddon Matrix was developed in the 1960s road safety arena, and has since been used in many public health settings. The literature and two specific case studies are reviewed to describe the background to the Haddon Matrix, identify how it has been critiqued and developed over time and practical applications in the work-related road safety context. Haddon’s original focus on the road, vehicle and driver has been extended and applied to include organisational safety culture, journey management and wider issues in society that affect occupational drivers and the communities in which they work. The paper shows that the Haddon Matrix has been applied in many projects and contexts. Practical work-related road safety applications include providing a comprehensive systems-based safety management framework to inform strategy. It has also been used to structure the review or gap analysis of current programs and processes, identify and develop prevention measures and as a tool for effective post-event investigations.
Resumo:
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming gammaH2AX(1). Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)(2). Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB(2,3). This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning approximately 2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete gammaH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy(2). The loss of gammaH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary(4-8). The disappearence of gammaH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C(5,6). Further, removal of gammaH2AX by redistribution involving histone exchange with H2A.Z has been implicated(7,8). Importantly, the quantitative analysis of gammaH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of gammaH2AX foci in gamma-irradiated adherent human keratinocytes(9)
Resumo:
DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.
Resumo:
Techniques are presented for enhancing weak Raman scattering signals for rapid yet accurate substance detection. Novel surfaces that allow signal enhancement quantification are described as are eye-safe methodologies that maximize the stand-off Raman detection range.
Resumo:
The controlled synthesis of nanostructured materials remains an ongoing area of research, especially as the size, shape and composition of nanomaterials can greatly influence their properties and applications. In this work we present the electrodeposition of highly dendritic platinum rich platinum-lead nanostructures, where lead acetate acts as an inorganic shape directing agent via underpotential deposition on the growing electrodeposit. It was found that these nanomaterials readily oxidise at potentials below monolayer oxide formation, which significantly impacts on the methanol electrooxidation reaction and correlates with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. Additionally these materials were tested for their surface enhanced Raman scattering (SERS) activity, where the high density of sharp tips provides promise for their application as SERS substrates.
Resumo:
Graphene/hexagonal boron nitride (G/h-BN) heterostructure has attracted tremendous research efforts owing to its great potential for applications in nano-scale electronic devices. In such hybrid materials, tilt grain boundaries (GBs) between graphene and h-BN grains may have unique physical properties, which have not been well understood. Here we have conducted non-equilibrium molecular dynamics simulations to study the energetic and thermal properties of tilt GBs in G/h-BN heterostructures. The effect of misorientation angles of tilt GBs on both GB energy and interfacial thermal conductance are investigated.
Resumo:
Defectivity has been historically identified as a leading technical roadblock to the implementation of nanoimprint lithography for semiconductor high volume manufacturing. The lack of confidence in nanoimprint's ability to meet defect requirements originates in part from the industry's past experiences with 1 × lithography and the shortage in enduser generated defect data. SEMATECH has therefore initiated a defect assessment aimed at addressing these concerns. The goal is to determine whether nanoimprint, specifically Jet and Flash Imprint Lithography from Molecular Imprints, is capable of meeting semiconductor industry defect requirements. At this time, several cycles of learning have been completed in SEMATECH's defect assessment, with promising results. J-FIL process random defectivity of < 0.1 def/cm2 has been demonstrated using a 120nm half-pitch template, providing proof of concept that a low defect nanoimprint process is possible. Template defectivity has also improved significantly as shown by a pre-production grade template at 80nm pitch. Cycles of learning continue on feature sizes down to 22nm. © 2011 SPIE.
Resumo:
Natural free convection is a process of great importance in disciplines from hydrology to meteorology, oceanography, planetary sciences, and economic geology, and for applications in carbon sequestration and nuclear waste disposal. It has been studied for over a century - but almost exclusively in theoretical and laboratory settings, Despite its importance, conclusive primary evidence of free convection in porous media does not currently exist in a natural field setting. Here, we present recent electrical resistivity measurements from a sabkha aquifer near Abu Dhabi, United Arab Emirates, where large density inversions exist. The geophysical images from this site provide, for the first time, compelling field evidence of fingering associated with natural free convection in groundwater.
Resumo:
Plasmid DMA offers the promise of a new generation of pharmaceuticals that will address the often overlooked issue of vaccine production by offering a simple and reproducible method for producing a vaccine. Through reverse engineering, production could be reduced from up to 9 months to as little as 1 month. Simplified development and faster turn-around times means that DMA offers a solution to the vaccine crisis and will help to contain future viral outbreaks by enabling the production of a vaccine against new viral strains in the shortest possible time. Work currently being completed in the area of plasmid DMA production, purification and encapsulation will be presented.
Resumo:
Achieving high efficiency with improved power transfer range and misalignment tolerance is the major design challenge in realizing Wireless Power Transfer (WPT) systems for industrial applications. Resonant coils must be carefully designed to achieve highest possible system performance by fully utilizing the available space. High quality factor and enhanced electromagnetic coupling are key indices which determine the system performance. In this paper, design parameter extraction and quality factor optimization of multi layered helical coils are presented using finite element analysis (FEA) simulations. In addition, a novel Toroidal Shaped Spiral (TSS) coil is proposed to increase power transfer range and misalignment tolerance. The proposed shapes and recommendations can be used to design high efficiency WPT resonator in a limited space.
Resumo:
A switching control strategy is proposed for single inductor current-fed push-pull converter with a secondary side active voltage doubler rectifier or a voltage rectifier used in photovoltaic (PV) grid interfacing. The proposed switching control strategy helps to turn-on and turn-off the primary side power switches with zero-voltage and zero-current switching. The operation of the push-pull converter is analyzed for two modes of operation. The feasibility of the proposed switching control strategy is validated using simulation and experimental results.