912 resultados para antigen presenting cells (APCs)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maintenance and generation of memory CD8 T cells is dependent on the cytokine IL-15. IL-15 is delivered by a novel mechanism termed transpresentation: IL-15 is presented by a cell expressing IL-15Ralpha to the CD8 T cell which responds via IL-2Rbeta/gammac. The identity of what cells transpresent IL-15 to support the survival and homeostatic proliferation of memory CD8 T cells is unknown. Using a transgenic mouse model that limits IL-15 transpresentation to DCs, I have demonstrated that DCs transpresent IL-15 to CD8 T cells. DCs transpresent IL-15 to CD8 T cells during the contraction of an immune response and also drive homeostatic proliferation of memory CD8 T cells. Additionally, I identified a role for ICAM-1 in promoting homeostatic proliferation. Wt memory CD8 T cells displayed impaired homeostatic proliferation in ICAM-1-/- hosts but not in models of acute IL-15-driven proliferation. In this way, the role of ICAM-1 in IL-15 transpresentation resembles the role for ICAM-1 in antigenpresentation: where antigen or IL-15 is limited, adhesion molecules are important for generating maximal responses. In vitro cultures between CD8 T cells and bone marrowdifferentiated DCs (BMDC) activated with a TLR agonist established a model of proliferation and signaling in CD8 T cells that was dependent on IL-15 transpresentation and required ICAM-1 expression by BMDCs. Regarding the expression of IL-15, I demonstrated that in normal mice it is undetectable without stimulation but is elevated in lymphopenic mice, suggesting a role for T cells in regulating IL-15 expression. Overall, these studies have identified many novel aspects of the interaction between DCs and CD8 T cells that were previously unknown. The study of adhesion molecules in IL-15 transpresentation describes a novel role for these well-known adhesion molecules and it will be interesting for future studies to further characterize this relationship for other IL-15-dependent cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is the most lethal single infectious agent afflicting man today causing 2 million deaths per year. The World Health Organization recommends a vaccine as the best option to prevent this disease. The current vaccine, BCG, has a variable efficacy and does not protect adults. It is known that BCG vaccine becomes sequestered in special phagosome compartments of macrophages that do not fuse with lysosomes. Since lysosome fusion is necessary for peptide production and T cell priming leading to protective TH1 immunity, we hypothesized that vaccine efficacy is reduced and occurs perhaps due to non-lysosome dependent mechanisms. We therefore proposed an in depth analysis of phagosome environment, and its proteome to unravel mechanisms of antigen processing and presentation. We initially discovered that three mechanisms of pH regulation including vacuolar proton ATPase, phagocyte oxidase and superoxide dismutase (SOD) secretion from BCG vaccine affect antigen processing within phagosomes. These studies led to the discovery that a mutant of BCG vaccine which lacked SOD was a better vaccine. Subsequently, the proteomic analysis of vaccine phagosomes led to the discovery of novel protease (γ-secretase) enriched on BCG vaccine phagosomes. We then demonstrated that these proteases generated a peptide from the BCG vaccine which was presented through the MHC-II pathway to T cells and induced a TH1 response. The specificity of antigen production from γ-secretase was confirmed through siRNA knockdown of the components of the protease namely, nicastrin, presenilin and APH, which led to a decrease in antigen presentation. We therefore conclude that, even though BCG phagosomes are sequestered and do not fuse with lysosomes to generate peptide antigens, there are complex and novel in situ mechanisms within phagosomes that are capable of generating an immune response. We conclude that TH1 immunity to BCG vaccine arises mostly due to non-lysosome dependent immune mechanisms of macrophages and dendritic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigenic changes present in nonantigenic tumor cells exposed to UV radiation (UV) in vitro were investigated by addressing the following questions: (1) Are antigenic variants (AV) produced that are rejected in normal but not immunosuppressed mice? (2) Does generation of AV depend upon intrinsic properties of the cells exposed or result from the action of UV? (3) Is antigenic modification induced by UV due to increased histocompatibility antigen expression? (4) Do AV crossreact immunologically with parental tumor or with other AV? and (5) Is the UV-associated common antigen expressed on UV-induced tumors present on UV-irradiated tumor cells? AV were generated at different frequencies following in vitro UV irradiation of a spontaneous murine fibrosarcoma (51% of cell lines tested), a murine melanoma (56%), and two melanoma clones (100% and 11%). This indicated that the percentage of AV produced is an intrinsic property of the cell line exposed. The increased antigenicity did not correlate with an increased expression of class I histocompatibility antigens. Immunological experiments demonstrated that the AV and parental cells shared a determinant that was susceptible to immune recognition, but incapable of inducing immunity. In contrast, the AV were noncrossreactive, suggesting that variant-specific antigens were also expressed. Finally, the AV were recognized by UV-induced suppressor cells, indicating that the UV-associated common antigen expressed by UV-induced tumors was also present. This investigation provides new information on the susceptibility of tumors to antigenic modification by UV and on the relationship between tumor antigens and neoplastic transformation. Furthermore, it suggests an immunological approach for cancer therapy. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skin immune system is believed to be a crucial site of contact between immunocompetent cells and invading organisms. A novel T cell component of murine epidermis is the Thy-1$\sp+$ dendritic epidermal cell (Tdec). To assess the immunocompetence of Tdec, the ability of Tdec to induce immune responses was tested. Tdec were unable to induce positive immune responses in three models of immunocompetence. Subsequent studies were designed to test the hypothesis that Tdec are involved in the down-regulation of cell-mediated immunity against cutaneous antigens. Cultured Tdec lines were conjugated in vitro with the hapten, fluorescein isothiocyanate (FITC). The intrafootpad (ifp.) or intravenous (i.v.) injection of FTIC-conjugated Tdec induced immunologic tolerance to subsequent epicutaneous sensitization with FITC. This induction of tolerance was antigen-specific, and injection of unconjugated Tdec had no effect on the contact hypersensitivity response to FITC. Tolerance was not H-2-restricted, since it could be induced in both syngeneic and allogeneic recipients of FITC-conjugated Tdec. No suppressive activity could be detected in lymphoid organs of animals tolerized by the ifp. injection of hapten-conjugated Tdec. In contrast, suppressor T cells were present in the spleens of mice injected i.v. with hapten-conjugated Tdec. These results indicate that Ts cells are not involved in the induction of tolerance by the ifp. injection of hapten-conjugated Tdec. To investigate the mechanism by which the ifp. injection of hapten-conjugated Tdec induced tolerance to contact sensitization, the activity of these cells was measured in vitro. The addition of hapten-conjugated Tdec inhibited the proliferation of Con A-stimulated lymphocytes. In addition, FITC-conjugated Tdec abrogated the proliferation of normal lymphocytes in response to FITC-labeled stimulator cells. These studies suggest that specific T cell-mediated immunity is the target of the inhibitory effect of Tdec in vitro. In summary, these results demonstrate that while Tdec are unable to induce positive immune responses, they can produce a state of specific immunologic tolerance when injected ifp. or i.v. These results also suggest that the induction of immunologic tolerance by hapten-conjugated Tdec may occur through the inactivation or elimination of activated T lymphocytes resulting in down-regulation of cell-mediated immunity against cutaneous antigens. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose. Sialyl-Tn(STn) represents an aberrantly glycosylated mucin epitope which is expressed in breast cancer and other adenocarcinomas and is an important target for the development of novel immunotherapeutic approaches. It is a marker of adverse prognosis in colon and ovarian cancer, but information about its prognostic impact in breast cancer is limited. The primary aim of the present study was to investigate the influence of STn expression on outcome of invasive breast cancer in 207 women who received anthracyline-containing adjuvant chemotherapy in a prospective clinical trial.^ Methods. Expression of STn was determined by an immunohistochemical procedure using the B72.3 monoclonal antibody. The extent of staining was determined by two observers using a 0 through 4 point scale, with 0 representing $<$5% of cells staining; 1: 5-25%; 2: 26-50%; 3: 51-75%; and 4: $>$75%. Intraobserver and interobserver agreement was.78-.92 (kappa). Kaplan-Meier and Cox proportional regression survival analyses were used to compare STn-negative and STn-positive patients.^ Results. Forty-eight (23%) of the 207 specimens demonstrated positive staining of STn. With a median follow-up of five years, STn-positivity was associated with a higher 5-year recurrence-free survival time than STn-negativity (67% vs. 80%, respectively; p = 0.03). STn expression was significantly associated with menopausal status (p = 0.04) but not other conventional prognostic markers. The risk of breast cancer recurrence and death was assessed by multivariate Cox regression analyses with adjustment for lymph node status, tumor size, menopausal status, hormone receptor status, nuclear grade, S-phase fraction and ploidy. In the final multivariate model for recurrence-free survival, the three factors that showed prognostic significance were: lymph node status (hazard ratio (HR) 3.04, 95% confidence interval (CI) 1.08-8.49), STn expression (HR 2.02, 95% CI 1.09-3.73), and tumor size (HR 1.96, 95% CI 1.05-3.64). STn was also associated with worse overall survival (HR 2.16, 95% CI 0.95-4.92) in multivariate analysis.^ Conclusion. STn antigen was shown to be a predictor of poor outcome in breast cancer. This tumor-associated antigen may be a valuable marker for identifying individuals at high risk of developing recurrent disease who may benefit from adjuvant therapy targeted at STn following definitive local therapy. Further study is needed to clarify the biologic and prognostic role of STn in breast cancer. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to determine the frequency of HLA class II antigen expression in colorectal carcinoma (CRC) tumors, its association with the clinical course of the disease, and the underlying mechanism(s). Two tissue microarrays constructed with 220 and 778 CRC tumors were stained with HLA-DR, DQ, and DP antigen-specific monoclonal antibody LGII-612.14, using the immunoperoxidase staining technique. The immunohistochemical staining results were correlated with the clinical course of the disease. The functional role of HLA class II antigens expressed on CRC cells was analyzed by investigating their in vitro interactions with immune cells. HLA class II antigens were expressed in about 25% of the 220 and 21% of the 778 tumors analyzed with an overall frequency of 23%. HLA class II antigens were detected in 19% of colorectal adenomas. Importantly, the percentage of stained cells and the staining intensity were significantly lower than those detected in CRC tumors. However, HLA class II antigen staining was weakly detected only in 5.4% of 37 normal mucosa tissues. HLA class II antigen expression was associated with a favorable clinical course of the disease. In vitro stimulation with interferon gamma (IFNγ) induced HLA class II antigen expression on two of the four CRC cell lines tested. HLA class II antigen expression on CRC cells triggered interleukin-1β (IL-1β) production by resting monocytes. HLA class II antigen expression in CRC tumors is a favorable prognostic marker. This association may reflect stimulation of IL-1β production by monocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering nanoparticles (NPs) for immune modulation require a thorough understanding of their interaction(s) with cells. Gold NPs (AuNPs) were coated with polyethylene glycol (PEG), polyvinyl alcohol (PVA) or a mixture of both with either positive or negative surface charge to investigate uptake and cell response in monocyte-derived dendritic cells (MDDCs). Inductively coupled plasma optical emission spectrometry and transmission electron microscopy were used to confirm the presence of Au inside MDDCs. Cell viability, (pro-)inflammatory responses, MDDC phenotype, activation markers, antigen uptake and processing were analyzed. Cell death was only observed for PVA-NH2 AuNPs at the highest concentration. MDDCs internalize AuNPs, however, surface modification influenced uptake. Though limited uptake was observed for PEG-COOH AuNPs, a significant tumor necrosis factor-alpha release was induced. In contrast, (PEG+PVA)-NH2 and PVA-NH2 AuNPs were internalized to a higher extent and caused interleukin-1beta secretion. None of the AuNPs caused changes in MDDC phenotype, activation or immunological properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acquired thrombotic thrombocytopenic purpura (TTP) is the consequence of a severe ADAMTS13 deficiency resulting from autoantibodies inhibiting ADAMTS13 or accelerating its clearance. Despite the success of plasma exchange the risk of relapse is high. From 2 patients (A and B), splenectomized for recurrent episodes of acquired TTP, the splenic B-cell response against ADAMTS13 was characterized through generation of human monoclonal anti-ADAMTS13 autoantibodies (mAbs) by cloning an immunoglobulin G (IgG)4κ- and IgG4λ-Fab library using phage display technology and by Epstein-Barr virus transformation of switched memory B cells (CD19+/CD27+/IgG+). Sequence analysis of the anti-ADAMTS13 IgGs of both patients revealed that the VH gene use was limited in our patients to VH1-3 (55%), VH1-69 (17%), VH3-30 (7%), and VH4-28 (21%) and contained 8 unique and thus far not reported heavy-chain complementarity determining region 3 motifs, of which 4 were shared by the 2 patients. The discovery of several highly similar anti-ADAMTS13 autoantibodies in 2 unrelated TTP patients suggests that the autoimmune response is antigen driven, because the probability that such similar immunoglobulin rearrangements happen by chance is very low (< 10(-9)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements-slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intestinal dendritic cells (DCs) are believed to sample and present commensal bacteria to the gut-associated immune system to maintain immune homeostasis. How antigen sampling pathways handle intestinal pathogens remains elusive. We present a murine colitogenic Salmonella infection model that is highly dependent on DCs. Conditional DC depletion experiments revealed that intestinal virulence of S. Typhimurium SL1344 DeltainvG mutant lacking a functional type 3 secretion system-1 (DeltainvG)critically required DCs for invasion across the epithelium. The DC-dependency was limited to the early phase of infection when bacteria colocalized with CD11c(+)CX3CR1(+) mucosal DCs. At later stages, the bacteria became associated with other (CD11c(-)CX3CR1(-)) lamina propria cells, DC depletion no longer attenuated the pathology, and a MyD88-dependent mucosal inflammation was initiated. Using bone marrow chimeric mice, we showed that the MyD88 signaling within hematopoietic cells, which are distinct from DCs, was required and sufficient for induction of the colitis. Moreover, MyD88-deficient DCs supported transepithelial uptake of the bacteria and the induction of MyD88-dependent colitis. These results establish that pathogen sampling by DCs is a discrete, and MyD88-independent, step during the initiation of a mucosal innate immune response to bacterial infection in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20μg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin-treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20μg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin-treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs) determines T cell transition from a naïve to an activated or tolerant/anergic status. Although many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting peptides presented on major histocompatibility complex with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8(+) T cells to cognate DC-CD4(+) T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for "optimal" DCs, while contributing to peripheral tolerance induction in the absence of inflammation.