872 resultados para antacid agent
Resumo:
In this paper we present AMSIA, an agent architecture that combines the possibility of using di erent reasoning methods with a mechanism to control the resources needed by the agent to ful ll its high level objectives. The architecture is based on the blackboard paradigm which o ers the possibility of combining di erent reasoning techniques and opportunistic behavior. The AMSIA architecture adds a representation of plans of objectives allowing di erent reasoning activities to create plans to guide the future behavior of the agent. The opportunism is in the acquisition of high-level objectives and in the modi cation of the predicted activity when something doesn't happen as expected. A control mechanism is responsible for the translation of plans of objectives to concrete activities, considering resource-boundedness. To do so, all the activity in the agent (including control) is explicitly scheduled, but allowing the necessary exibility to make changes in the face of contingencies that are expected in dynamic environments. Experimental work is also presented.
Resumo:
In this paper, we introduce B2DI model that extends BDI model to perform Bayesian inference under uncertainty. For scalability and flexibility purposes, Multiply Sectioned Bayesian Network (MSBN) technology has been selected and adapted to BDI agent reasoning. A belief update mechanism has been defined for agents, whose belief models are connected by public shared beliefs, and the certainty of these beliefs is updated based on MSBN. The classical BDI agent architecture has been extended in order to manage uncertainty using Bayesian reasoning. The resulting extended model, so-called B2DI, proposes a new control loop. The proposed B2DI model has been evaluated in a network fault diagnosis scenario. The evaluation has compared this model with two previously developed agent models. The evaluation has been carried out with a real testbed diagnosis scenario using JADEX. As a result, the proposed model exhibits significant improvements in the cost and time required to carry out a reliable diagnosis.
Resumo:
In this paper we propose a flexible Multi-Agent Architecture together with a methodology for indoor location which allows us to locate any mobile station (MS) such as a Laptop, Smartphone, Tablet or a robotic system in an indoor environment using wireless technology. Our technology is complementary to the GPS location finder as it allows us to locate a mobile system in a specific room on a specific floor using the Wi-Fi networks. The idea is that any MS will have an agent known at a Fuzzy Location Software Agent (FLSA) with a minimum capacity processing at its disposal which collects the power received at different Access Points distributed around the floor and establish its location on a plan of the floor of the building. In order to do so it will have to communicate with the Fuzzy Location Manager Software Agent (FLMSA). The FLMSAs are local agents that form part of the management infrastructure of the Wi-Fi network of the Organization. The FLMSA implements a location estimation methodology divided into three phases (measurement, calibration and estimation) for locating mobile stations (MS). Our solution is a fingerprint-based positioning system that overcomes the problem of the relative effect of doors and walls on signal strength and is independent of the network device manufacturer. In the measurement phase, our system collects received signal strength indicator (RSSI) measurements from multiple access points. In the calibration phase, our system uses these measurements in a normalization process to create a radio map, a database of RSS patterns. Unlike traditional radio map-based methods, our methodology normalizes RSS measurements collected at different locations on a floor. In the third phase, we use Fuzzy Controllers to locate an MS on the plan of the floor of a building. Experimental results demonstrate the accuracy of the proposed method. From these results it is clear that the system is highly likely to be able to locate an MS in a room or adjacent room.
Resumo:
We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction.
Resumo:
This demo concerns a recently developed prototype of an emotionally-sensitive autonomous HiFi Spoken Conversa- tional Agent, called NEMOHIFI. The baseline agent was developed by the Speech Technology Group (GTH) and has recently been integrated with an emotional engine called NEMO (Need-inspired Emotional Model) to enable it to adapt to users emotion and respond to the users using ap- propriate expressive speech. NEMOHIFI controls and man- ages the HiFi audio system, and for end users, its functions equate a remote control, except that instead of clicking, the user interacts with the agent using voice. A pairwise com- parison between the baseline (non-adaptive) and NEMO- HIFI is also presented.
Resumo:
This paper presents the development of the robotic multi-agent system SMART. In this system, the agent concept is applied to both hardware and software entities. Hardware agents are robots, with three and four legs, and an IP-camera that takes images of the scene where the cooperative task is carried out. Hardware agents strongly cooperate with software agents. These latter agents can be classified into image processing, communications, task management and decision making, planning and trajectory generation agents. To model, control and evaluate the performance of cooperative tasks among agents, a kind of PetriNet, called Work-Flow Petri Net, is used. Experimental results shows the good performance of the system.
Resumo:
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.
Resumo:
This paper describes an agent-based approach for the simulation of air traffic management (ATM) in Europe that was designed to help analyze proposals for future ATM systems. This approach is able to represent new collaborative deci-sion processes for flow traffic management, it uses an intermediate level of ab-straction (useful for simulations at larger scales), and was designed to be a practi-cal tool (open and reusable) for the development of different ATM studies. It was successfully applied in three studies related to the design of future ATM systems in Europe.
Resumo:
The aim of this chapter is to discuss the applicability of recently proposed knowledge modelling tools to the development of agent-based systems. The discussion is derived from the real world experience of a particular software tool called KSM (Knowledge Structure Manager). The chapter provides details about this tool and then proceeds to show in which forms the software may be used to support the development of agent-based systems. Two multiagent systems, one in the field of telecommunications management and the other one in the field of flood control, are described. Conclusions about these studies are presented, summarizing the main contributions that knowledge modelling tools can bring to the development of agent-based systems.
Resumo:
This paper argues about the utility of advanced knowledge-based techniques to develop web-based applications that help consumers in finding products within marketplaces in e-commerce. In particular, we describe the idea of model-based approach to develop a shopping agent that dynamically configures a product according to the needs and preferences of customers. Finally, the paper summarizes the advantages provided by this approach.
Resumo:
The primary hypothesis stated by this paper is that the use of social choice theory in Ambient Intelligence systems can improve significantly users satisfaction when accessing shared resources. A research methodology based on agent based social simulations is employed to support this hypothesis and to evaluate these benefits. The result is a six-fold contribution summarized as follows. Firstly, several considerable differences between this application case and the most prominent social choice application, political elections, have been found and described. Secondly, given these differences, a number of metrics to evaluate different voting systems in this scope have been proposed and formalized. Thirdly, given the presented application and the metrics proposed, the performance of a number of well known electoral systems is compared. Fourthly, as a result of the performance study, a novel voting algorithm capable of obtaining the best balance between the metrics reviewed is introduced. Fifthly, to improve the social welfare in the experiments, the voting methods are combined with cluster analysis techniques. Finally, the article is complemented by a free and open-source tool, VoteSim, which ensures not only the reproducibility of the experimental results presented, but also allows the interested reader to adapt the case study presented to different environments.
Resumo:
This document contains detailed description of the design and the implementation of a multi-agent application controlling traffic lights in a city together with a system for simulating traffic and testing. The goal of this thesis is to design and build a simplified intelligent and distributed solution to the problem with the traffic in the big cities following different good practices in order to allow future refining of the model of the real world. The problem of the traffic in the big cities is still a problem that cannot be solved. Not only is the increasing number of cars a reason for the traffic jams, but also the way the traffic is organized. Usually, the intersections with traffic lights are replaced by roundabouts or interchanges to increase the number of cars that can cross the intersection in certain time. But still there are places where the infrastructure cannot be changed and the traffic light semaphores are the only way to control the car flows. In real life, the traffic lights have a predefined plan for change or they receive information from a centralized system when and how they have to change. But what if the traffic lights can cooperate and decide on their own when and how to change? Using this problem, the purpose of the thesis is to explore different agent-based software engineering approaches to design and build a non-conventional distributed system. From the software engineering point of view, the goal of the thesis is to apply the knowledge and use the skills, acquired during the various courses of the master program in Software Engineering, while solving a practical and complex problem such as the traffic in the cities.
Resumo:
Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.
Resumo:
La presente tesis doctoral contribuye al problema del diagnóstico autonómico de fallos en redes de telecomunicación. En las redes de telecomunicación actuales, las operadoras realizan tareas de diagnóstico de forma manual. Dichas operaciones deben ser llevadas a cabo por ingenieros altamente cualificados que cada vez tienen más dificultades a la hora de gestionar debidamente el crecimiento exponencial de la red tanto en tamaño, complejidad y heterogeneidad. Además, el advenimiento del Internet del Futuro hace que la demanda de sistemas que simplifiquen y automaticen la gestión de las redes de telecomunicación se haya incrementado en los últimos años. Para extraer el conocimiento necesario para desarrollar las soluciones propuestas y facilitar su adopción por los operadores de red, se propone una metodología de pruebas de aceptación para sistemas multi-agente enfocada en simplificar la comunicación entre los diferentes grupos de trabajo involucrados en todo proyecto de desarrollo software: clientes y desarrolladores. Para contribuir a la solución del problema del diagnóstico autonómico de fallos, se propone una arquitectura de agente capaz de diagnosticar fallos en redes de telecomunicación de manera autónoma. Dicha arquitectura extiende el modelo de agente Belief-Desire- Intention (BDI) con diferentes modelos de diagnóstico que gestionan las diferentes sub-tareas del proceso. La arquitectura propuesta combina diferentes técnicas de razonamiento para alcanzar su propósito gracias a un modelo estructural de la red, que usa razonamiento basado en ontologías, y un modelo causal de fallos, que usa razonamiento Bayesiano para gestionar debidamente la incertidumbre del proceso de diagnóstico. Para asegurar la adecuación de la arquitectura propuesta en situaciones de gran complejidad y heterogeneidad, se propone un marco de argumentación que permite diagnosticar a agentes que estén ejecutando en dominios federados. Para la aplicación de este marco en un sistema multi-agente, se propone un protocolo de coordinación en el que los agentes dialogan hasta alcanzar una conclusión para un caso de diagnóstico concreto. Como trabajos futuros, se consideran la extensión de la arquitectura para abordar otros problemas de gestión como el auto-descubrimiento o la auto-optimización, el uso de técnicas de reputación dentro del marco de argumentación para mejorar la extensibilidad del sistema de diagnóstico en entornos federados y la aplicación de las arquitecturas propuestas en las arquitecturas de red emergentes, como SDN, que ofrecen mayor capacidad de interacción con la red. ABSTRACT This PhD thesis contributes to the problem of autonomic fault diagnosis of telecommunication networks. Nowadays, in telecommunication networks, operators perform manual diagnosis tasks. Those operations must be carried out by high skilled network engineers which have increasing difficulties to properly manage the growing of those networks, both in size, complexity and heterogeneity. Moreover, the advent of the Future Internet makes the demand of solutions which simplifies and automates the telecommunication network management has been increased in recent years. To collect the domain knowledge required to developed the proposed solutions and to simplify its adoption by the operators, an agile testing methodology is defined for multiagent systems. This methodology is focused on the communication gap between the different work groups involved in any software development project, stakeholders and developers. To contribute to overcoming the problem of autonomic fault diagnosis, an agent architecture for fault diagnosis of telecommunication networks is defined. That architecture extends the Belief-Desire-Intention (BDI) agent model with different diagnostic models which handle the different subtasks of the process. The proposed architecture combines different reasoning techniques to achieve its objective using a structural model of the network, which uses ontology-based reasoning, and a causal model, which uses Bayesian reasoning to properly handle the uncertainty of the diagnosis process. To ensure the suitability of the proposed architecture in complex and heterogeneous environments, an argumentation framework is defined. This framework allows agents to perform fault diagnosis in federated domains. To apply this framework in a multi-agent system, a coordination protocol is defined. This protocol is used by agents to dialogue until a reliable conclusion for a specific diagnosis case is reached. Future work comprises the further extension of the agent architecture to approach other managements problems, such as self-discovery or self-optimisation; the application of reputation techniques in the argumentation framework to improve the extensibility of the diagnostic system in federated domains; and the application of the proposed agent architecture in emergent networking architectures, such as SDN, which offers new capabilities of control for the network.
Resumo:
Internet está evolucionando hacia la conocida como Live Web. En esta nueva etapa en la evolución de Internet, se pone al servicio de los usuarios multitud de streams de datos sociales. Gracias a estas fuentes de datos, los usuarios han pasado de navegar por páginas web estáticas a interacturar con aplicaciones que ofrecen contenido personalizado, basada en sus preferencias. Cada usuario interactúa a diario con multiples aplicaciones que ofrecen notificaciones y alertas, en este sentido cada usuario es una fuente de eventos, y a menudo los usuarios se sienten desbordados y no son capaces de procesar toda esa información a la carta. Para lidiar con esta sobresaturación, han aparecido múltiples herramientas que automatizan las tareas más habituales, desde gestores de bandeja de entrada, gestores de alertas en redes sociales, a complejos CRMs o smart-home hubs. La contrapartida es que aunque ofrecen una solución a problemas comunes, no pueden adaptarse a las necesidades de cada usuario ofreciendo una solucion personalizada. Los Servicios de Automatización de Tareas (TAS de sus siglas en inglés) entraron en escena a partir de 2012 para dar solución a esta liminación. Dada su semejanza, estos servicios también son considerados como un nuevo enfoque en la tecnología de mash-ups pero centra en el usuarios. Los usuarios de estas plataformas tienen la capacidad de interconectar servicios, sensores y otros aparatos con connexión a internet diseñando las automatizaciones que se ajustan a sus necesidades. La propuesta ha sido ámpliamante aceptada por los usuarios. Este hecho ha propiciado multitud de plataformas que ofrecen servicios TAS entren en escena. Al ser un nuevo campo de investigación, esta tesis presenta las principales características de los TAS, describe sus componentes, e identifica las dimensiones fundamentales que los defines y permiten su clasificación. En este trabajo se acuña el termino Servicio de Automatización de Tareas (TAS) dando una descripción formal para estos servicios y sus componentes (llamados canales), y proporciona una arquitectura de referencia. De igual forma, existe una falta de herramientas para describir servicios de automatización, y las reglas de automatización. A este respecto, esta tesis propone un modelo común que se concreta en la ontología EWE (Evented WEb Ontology). Este modelo permite com parar y equiparar canales y automatizaciones de distintos TASs, constituyendo un aporte considerable paraa la portabilidad de automatizaciones de usuarios entre plataformas. De igual manera, dado el carácter semántico del modelo, permite incluir en las automatizaciones elementos de fuentes externas sobre los que razonar, como es el caso de Linked Open Data. Utilizando este modelo, se ha generado un dataset de canales y automatizaciones, con los datos obtenidos de algunos de los TAS existentes en el mercado. Como último paso hacia el lograr un modelo común para describir TAS, se ha desarrollado un algoritmo para aprender ontologías de forma automática a partir de los datos del dataset. De esta forma, se favorece el descubrimiento de nuevos canales, y se reduce el coste de mantenimiento del modelo, el cual se actualiza de forma semi-automática. En conclusión, las principales contribuciones de esta tesis son: i) describir el estado del arte en automatización de tareas y acuñar el término Servicio de Automatización de Tareas, ii) desarrollar una ontología para el modelado de los componentes de TASs y automatizaciones, iii) poblar un dataset de datos de canales y automatizaciones, usado para desarrollar un algoritmo de aprendizaje automatico de ontologías, y iv) diseñar una arquitectura de agentes para la asistencia a usuarios en la creación de automatizaciones. ABSTRACT The new stage in the evolution of the Web (the Live Web or Evented Web) puts lots of social data-streams at the service of users, who no longer browse static web pages but interact with applications that present them contextual and relevant experiences. Given that each user is a potential source of events, a typical user often gets overwhelmed. To deal with that huge amount of data, multiple automation tools have emerged, covering from simple social media managers or notification aggregators to complex CRMs or smart-home Hub/Apps. As a downside, they cannot tailor to the needs of every single user. As a natural response to this downside, Task Automation Services broke in the Internet. They may be seen as a new model of mash-up technology for combining social streams, services and connected devices from an end-user perspective: end-users are empowered to connect those stream however they want, designing the automations they need. The numbers of those platforms that appeared early on shot up, and as a consequence the amount of platforms following this approach is growing fast. Being a novel field, this thesis aims to shed light on it, presenting and exemplifying the main characteristics of Task Automation Services, describing their components, and identifying several dimensions to classify them. This thesis coins the term Task Automation Services (TAS) by providing a formal definition of them, their components (called channels), as well a TAS reference architecture. There is also a lack of tools for describing automation services and automations rules. In this regard, this thesis proposes a theoretical common model of TAS and formalizes it as the EWE ontology This model enables to compare channels and automations from different TASs, which has a high impact in interoperability; and enhances automations providing a mechanism to reason over external sources such as Linked Open Data. Based on this model, a dataset of components of TAS was built, harvesting data from the web sites of actual TASs. Going a step further towards this common model, an algorithm for categorizing them was designed, enabling their discovery across different TAS. Thus, the main contributions of the thesis are: i) surveying the state of the art on task automation and coining the term Task Automation Service; ii) providing a semantic common model for describing TAS components and automations; iii) populating a categorized dataset of TAS components, used to learn ontologies of particular domains from the TAS perspective; and iv) designing an agent architecture for assisting users in setting up automations, that is aware of their context and acts in consequence.