846 resultados para adaptive ecosystem management
Resumo:
There is an increasing emphasis on the restoration of ecosystem services as well as of biodiversity, especially where restoration projects are planned at a landscape scale. This increase in the diversity of restoration aims has a number of conceptual and practical implications for the way that restoration projects are monitored and evaluated. Landscape-scale projects require monitoring of not only ecosystem services and biodiversity but also of ecosystem processes since these can underpin both. Using the experiences gained at a landscape-scale wetland restoration project in the UK, we discuss a number of issues that need to be considered, including the choice of metrics for monitoring ecosystem services and the difficulties of assessing the interactions between ecosystem processes, biodiversity, and ecosystem services. Particular challenges that we identify, using two pilot data sets, include the decoupling of monetary metrics used for monitoring ecosystem services from biophysical change on the ground and the wide range of factors external to a project that influence the monitoring results. We highlight the fact that the wide range of metrics necessary to evaluate the ecosystem service, ecosystem process, and biodiversity outcomes of landscape-scale projects presents a number of practical challenges, including the need for high levels of varied expertise, high costs, incommensurate monitoring outputs, and the need for careful management of monitoring results, especially where they may be used in making decisions about the relative importance of project aims.
Resumo:
Human-environment connections are the subject of much study, and the details of those connections are crucial factors in effective environmental management. In a large, interdisciplinary study of the eastern Bering Sea ecosystem involving disciplines from physical oceanography to anthropology, one of the research teams examined commercial fisheries and another looked at subsistence harvests by Alaska Natives. Commercial fisheries and subsistence harvests are extensive, demonstrating strong connections between the ecosystem and the humans who use it. At the same time, however, both research teams concluded that the influence of ecosystem conditions on the outcomes of human activities was weaker than anticipated. Likely explanations of this apparently loose coupling include the ability of fishers and hunters to adjust to variable conditions, and the role of social systems and management in moderating the direct effects of changes in the ecosystem. We propose a new conceptual model for future studies that incorporates a greater range of social factors and their dynamics, in addition to similarly detailed examinations of the ecosystem itself.
Resumo:
Le processus de planification forestière hiérarchique présentement en place sur les terres publiques risque d’échouer à deux niveaux. Au niveau supérieur, le processus en place ne fournit pas une preuve suffisante de la durabilité du niveau de récolte actuel. À un niveau inférieur, le processus en place n’appuie pas la réalisation du plein potentiel de création de valeur de la ressource forestière, contraignant parfois inutilement la planification à court terme de la récolte. Ces échecs sont attribuables à certaines hypothèses implicites au modèle d’optimisation de la possibilité forestière, ce qui pourrait expliquer pourquoi ce problème n’est pas bien documenté dans la littérature. Nous utilisons la théorie de l’agence pour modéliser le processus de planification forestière hiérarchique sur les terres publiques. Nous développons un cadre de simulation itératif en deux étapes pour estimer l’effet à long terme de l’interaction entre l’État et le consommateur de fibre, nous permettant ainsi d’établir certaines conditions pouvant mener à des ruptures de stock. Nous proposons ensuite une formulation améliorée du modèle d’optimisation de la possibilité forestière. La formulation classique du modèle d’optimisation de la possibilité forestière (c.-à-d., maximisation du rendement soutenu en fibre) ne considère pas que le consommateur de fibre industriel souhaite maximiser son profit, mais suppose plutôt la consommation totale de l’offre de fibre à chaque période, peu importe le potentiel de création de valeur de celle-ci. Nous étendons la formulation classique du modèle d’optimisation de la possibilité forestière afin de permettre l’anticipation du comportement du consommateur de fibre, augmentant ainsi la probabilité que l’offre de fibre soit entièrement consommée, rétablissant ainsi la validité de l’hypothèse de consommation totale de l’offre de fibre implicite au modèle d’optimisation. Nous modélisons la relation principal-agent entre le gouvernement et l’industrie à l’aide d’une formulation biniveau du modèle optimisation, où le niveau supérieur représente le processus de détermination de la possibilité forestière (responsabilité du gouvernement), et le niveau inférieur représente le processus de consommation de la fibre (responsabilité de l’industrie). Nous montrons que la formulation biniveau peux atténuer le risque de ruptures de stock, améliorant ainsi la crédibilité du processus de planification forestière hiérarchique. Ensemble, le modèle biniveau d’optimisation de la possibilité forestière et la méthodologie que nous avons développée pour résoudre celui-ci à l’optimalité, représentent une alternative aux méthodes actuellement utilisées. Notre modèle biniveau et le cadre de simulation itérative représentent un pas vers l’avant en matière de technologie de planification forestière axée sur la création de valeur. L’intégration explicite d’objectifs et de contraintes industrielles au processus de planification forestière, dès la détermination de la possibilité forestière, devrait favoriser une collaboration accrue entre les instances gouvernementales et industrielles, permettant ainsi d’exploiter le plein potentiel de création de valeur de la ressource forestière.
Resumo:
The fundamental purpose of fisheries management is to ensure sustainable production over time from fish stocks, preferably through regulatory and enhancement actions that promote economic and social well being of the fishers and industries that depend on the resource. To achieve this purpose, management authorities must design, justify and administer (enforce) a collection of restraints on fishing and fishery-related activities. Productivity and management of the fisheries should be based on the understanding that they are complex and dynamic systems. Physical, chemical and biological components support a community of organisms that is unique to the these systems. All these components are in constant change but mainly dictated by human interference in the water body ecosystem.
Resumo:
Stakeholder engagement is important for successful management of natural resources, both to make effective decisions and to obtain support. However, in the context of coastal management, questions remain unanswered on how to effectively link decisions made at the catchment level with objectives for marine biodiversity and fisheries productivity. Moreover, there is much uncertainty on how to best elicit community input in a rigorous manner that supports management decisions. A decision support process is described that uses the adaptive management loop as its basis to elicit management objectives, priorities and management options using two case studies in the Great Barrier Reef, Australia. The approach described is then generalised for international interest. A hierarchical engagement model of local stakeholders, regional and senior managers is used. The result is a semi-quantitative generic elicitation framework that ultimately provides a prioritised list of management options in the context of clearly articulated management objectives that has widespread application for coastal communities worldwide. The case studies show that demand for local input and regional management is high, but local influences affect the relative success of both engagement processes and uptake by managers. Differences between case study outcomes highlight the importance of discussing objectives prior to suggesting management actions, and avoiding or minimising conflicts at the early stages of the process. Strong contributors to success are a) the provision of local information to the community group, and b) the early inclusion of senior managers and influencers in the group to ensure the intellectual and time investment is not compromised at the final stages of the process. The project has uncovered a conundrum in the significant gap between the way managers perceive their management actions and outcomes, and community's perception of the effectiveness (and wisdom) of these same management actions.
Resumo:
Nile perch (Lates niloticus), tilapia (Oreochromis spp), dagaa (Rastrineobola argentea, silver cyprinid), and haplochromines (Tribe Haplochromini) form the backbone of the commercial fishery on Lake Victoria. These fish stocks account for about 70% of the total catch in the three riparian states Uganda, Kenya, and Tanzania. The lake fisheries have been poorly managed, in part due to inadequate scientific analysis and management advice. The overall objective of this project was to model the stocks of the commercial fisheries of Lake Victoria with the view of determining reference points and current stock status. The Schaefer biomass model was fitted to available data for each stock (starting in the 1960s or later) in the form of landings, catch per unit effort, acoustic survey indices, and trawl survey indices. In most cases, the Schaefer model did not fit all data components very well, but attempts were made to find the best model for each stock. When the model was fitted to the Nile perch data starting from 1996, the estimated current biomass is 654 kt (95% CI 466–763); below the optimum of 692 kt and current harvest rate is 38% (33–73%), close to the optimum of 35%. At best, these can be used as tentative guidelines for the management of these fisheries. The results indicate that there have been strong multispecies interactions in the lake ecosystem. The findings from our study can be used as a baseline reference for future studies using more complex models, which could take these multispecies interactions into account.
Resumo:
Dissertação de Mestrado, Gestão de Empresas (MBA), 23 de Maio de 2016, Universidade dos Açores.
Resumo:
Background: The use of artificial endoprostheses has become a routine procedure for knee and hip joints while ankle arthritis has traditionally been treated by means of arthrodesis. Due to its advantages, the implantation of endoprostheses is constantly increasing. While finite element analyses (FEA) of strain-adaptive bone remodelling have been carried out for the hip joint in previous studies, to our knowledge there are no investigations that have considered remodelling processes of the ankle joint. In order to evaluate and optimise new generation implants of the ankle joint, as well as to gain additional knowledge regarding the biomechanics, strain-adaptive bone remodelling has been calculated separately for the tibia and the talus after providing them with an implant. Methods: FE models of the bone-implant assembly for both the tibia and the talus have been developed. Bone characteristics such as the density distribution have been applied corresponding to CT scans. A force of 5,200 N, which corresponds to the compression force during normal walking of a person with a weight of 100 kg according to Stauffer et al., has been used in the simulation. The bone adaptation law, previously developed by our research team, has been used for the calculation of the remodelling processes. Results: A total bone mass loss of 2% in the tibia and 13% in the talus was calculated. The greater decline of density in the talus is due to its smaller size compared to the relatively large implant dimensions causing remodelling processes in the whole bone tissue. In the tibia, bone remodelling processes are only calculated in areas adjacent to the implant. Thus, a smaller bone mass loss than in the talus can be expected. There is a high agreement between the simulation results in the distal tibia and the literature regarding. Conclusions: In this study, strain-adaptive bone remodelling processes are simulated using the FE method. The results contribute to a better understanding of the biomechanical behaviour of the ankle joint and hence are useful for the optimisation of the implant geometry in the future.
Resumo:
Wheat occupies a principal place in the diet of humans globally, contributing more to our daily calorie and protein intake than any other crop. For this reason, preventing weed induced yield losses in wheat has high significance for world food sustainability. Herbicides and tillage play an important role in weed control, but their use has often unacceptable consequences for humans and the wider environment. Additionally, the range of herbicides effective on key weeds is dwindling due to the evolution of herbicide resistance. Elevating crop competitiveness against weeds, through a combination of wheat breeding and innovative planting design (planting density, row spacing and orientation), has strong potential to reduce weed-induced yield losses in wheat. The last decade of research has provided a solid foundation for the breeding of weed suppressive wheat cultivars, and continued research in this area should be a focus for the future. In the interim, there is cause for optimism that weeds can be effectively suppressed using existing wheat varieties, through careful cultivar selection and choice of planting design. Further research is required to define the nature of relationships between cultivar traits and competitive planting strategies, across diverse weed flora in multiple countries, sites and seasons. Investment in such innovation promises to produce benefits, not only in terms of sustained wheat yields, but also in terms of human and ecosystem health, through ameliorating chemical and sediment contamination, soil degradation, and CO2 pollution.
Resumo:
For decades, global climate change has directly and indirectly affected the structure and function of ecosystems. Abrupt changes in biodiversity have been observed in response to linear or sudden modifications to the environment. These abrupt shifts can cause long-term reorganizations within ecosystems, with communities exhibiting new functional responses to environmental factors. Over the last 3 decades, the Gironde estuary in southwest France has experienced 2 abrupt shifts in both the physical and chemical environments and the pelagic community. Rather than describing these shifts and their origins, we focused on the 3 inter-shift periods, describing the structure of the fish community and its relationship with the environment during these periods. We described fish biodiversity using a limited set of descriptors, taking into account both species composition and relative species abundances. Inter-shift ecosystem states were defined based on the relationship between this description and the hydro-physico-chemical variables and climatic indices defining the main features of the environment. This relationship was described using generalized linear mixed models on the entire time series and for each inter-shift period. Our results indicate that (1) the fish community structure has been significantly modified, (2) environmental drivers influencing fish diversity have changed during these 3 periods, and (3) the fish-environment relationships have been modified over time. From this, we conclude a regime shift has occurred in the Gironde estuary. We also highlight that anthropogenic influences have increased, which re-emphasizes the importance of local management in maintaining fish diversity and associated goods and services within the context of climate change.
Resumo:
Supply chains are ubiquitous in any commercial delivery systems. The exchange of goods and services, from different supply points to distinct destinations scattered along a given geographical area, requires the management of stocks and vehicles fleets in order to minimize costs while maintaining good quality services. Even if the operating conditions remain constant over a given time horizon, managing a supply chain is a very complex task. Its complexity increases exponentially with both the number of network nodes and the dynamical operational changes. Moreover, the management system must be adaptive in order to easily cope with several disturbances such as machinery and vehicles breakdowns or changes in demand. This work proposes the use of a model predictive control paradigm in order to tackle the above referred issues. The obtained simulation results suggest that this strategy promotes an easy tasks rescheduling in case of disturbances or anticipated changes in operating conditions. © Springer International Publishing Switzerland 2017
Resumo:
Mestrado Mediterranean Forestry and Natural Resources Management - Instituto Superior de Agronomia - UL
Resumo:
Dissertação para obtenção do grau de Doutor em Design, apresentada na Universidade de Lisboa - Faculdade de Arquitetura.
Resumo:
We evaluated the water characteristics and particle sedimentation in Macrobrachium amazonicum (Heller 1862) grow-out ponds supplied with a high inflow of nutrient-rich water. Prawns were subject to different stocking and harvesting strategies: upper-graded juveniles, lower-graded juveniles, non-graded juveniles + selective harvesting and traditional farming (non-grading juveniles and total harvest only). Dissolved oxygen, afternoon N-ammonia and N-nitrate and soluble orthophosphate were lower in the ponds in comparison with inflow water through the rearing cycle. Ponds stocked with the upper population fraction of graded prawns showed higher turbidity, total suspended solids and total Kjeldahl nitrogen than the remaining treatments. An increase in the chemical oxygen demand:biochemical oxygen demand ratio from inlet (4.9) to pond (7.1-8.0) waters indicated a non-readily biodegradable fraction enhancement in ponds. The sedimentation mean rate ranged from 0.08 to 0.16 mm day(-1) and sediment contained >80% of organic matter. The major factors affecting pond ecosystem dynamic were the organic load (due to primary production and feed addition) and bioturbation caused by stocking larger animals. Data suggest that M. amazonicum grow-out in ponds subjected to a high inflow of nutrient-rich water produce changes in the water properties, huge accumulation of organic sediment at the pond bottom and non-readily biodegradable material in the water column. However, the water quality remains suitable for aquaculture purposes. Therefore, nutrient-rich waters, when available, may represent a source of unpaid nutrients, which may be incorporated into economically valued biomass if managed properly.