980 resultados para acute phase reactant protein
Resumo:
Background: Evaluation of myocardial function by speckle-tracking echocardiography is a new method for the early diagnosis of systolic dysfunction. Objectives: We aimed to determine myocardial speckle-tracking echocardiography indices in Kawasaki Disease (KD) patients and compare them with the same indices in control subjects. Patients and Methods: Thirty-two patients (65.5% males) with KD and 19 control subjects with normal echocardiography participated in this study. After their demographic characteristics and clinical findings were recorded, all the participants underwent transthoracic echocardiography. Strain (S), Strain Rate (SR), Time to Peak Strain (TPS), and Strain Rate (TPSR), longitudinal velocity and view point velocity images in the two, three, and four-chamber views were semi-automatically obtained via speckle-tracking echocardiography. Results: Among the patients, Twenty-four cases (75%) were younger than 4 years. Mean global S and SR was significantly reduced in the KD patients compared to controls (17.03 ± 1.28 vs. 20.22 ± 2.14% and 1.66 ± 0.16 vs. 1.97 ± 0.25 1/second, respectively), while there were no significant differences regarding mean TPS, TPSR, longitudinal velocity and view point velocity. Using repeated measure of analysis of variances, we observed that S and SR decreased from base to apical level in both groups. The change in the pattern of age adjusted mean S and SR across levels was significantly different between the groups (P < 0.001 for both parameters). Conclusions: We showed changes in S and SR assessed in KD patients versus control subjects in the acute phase of KD. However, we suggest that further studies be undertaken to compare S and SR in the acute phase and thereafter in KD patients.
Resumo:
Introduction: Involvement of penis is a rare presentation in henoch-schonlein purpura (HSP). The presentations are mainly due to the deposition of immunoglobulin A (IgA) into the vessel walls. In this report, we present the clinical history of nine HSP cases that presented with penile skin involvement. Case Presentation: All patients were referred in the acute phase of HSP. Penile skin involvement was evident as erythema, edema, ecchymosis, or induration of prepuce and/or penile shaft, that appeared simultaneously with skin rash in seven patients. Gastrointestinal involvement was positive in six patients. Patients were treated with steroids and follow up visits were normal except for one patient that developed crescentic glomerulonephritis. Conclusions: We present nine cases of HSP with penile involvement in order to indicate another rare aspect of HSP and its possible complications as well as its appropriate treatment.
Resumo:
Introduction : Les nourrissons, vu la grande compliance de leur cage thoracique, doivent maintenir activement leur volume pulmonaire de fin d’expiration (VPFE). Ceci se fait par interruption précoce de l’expiration, et par le freinage expiratoire au niveau laryngé et par la persistance de la contraction des muscles inspiratoires. Chez les nourrissons ventilés mécaniquement, notre équipe a montré que le diaphragme est activé jusqu’à la fin de l’expiration (activité tonique). Il n’est pas clair si cette activité tonique diaphragmatique compense pour l’absence de freinage laryngé liée à l’intubation endotrachéale. Objectif : Notre objectif est de déterminer si l’activité tonique diaphragmatique persiste après l’extubation chez les nourrissons et si elle peut être observée chez les enfants plus âgés. Méthode : Ceci est une étude observationnelle longitudinale prospective de patients âgés de 1 semaine à 18 ans admis aux soins intensifs pédiatriques (SIP), ventilés mécaniquement pour >24 heures et avec consentement parental. L’activité électrique du diaphragme (AEdi) a été enregistrée à l’aide d’une sonde nasogastrique spécifique à 4 moments durant le séjour aux SIP : en phase aigüe, pré et post-extubation et au congé. L’AEdi a été analysée de façon semi-automatique. L’AEdi tonique a été définie comme l’AEdi durant le dernier quartile de l’expiration. Résultats : 55 patients avec un âge médian de 10 mois (écart interquartile: 1-48) ont été étudiés. Chez les nourrissons (<1an, n=28), l’AEdi tonique en pourcentage de l’activité inspiratoire était de 48% (30-56) en phase aigüe, 38% (25-44) pré-extubation, 28% (17-42) post-extubation et 33% (22-43) au congé des SIP (p<0.05, ANOVA, avec différence significative entre enregistrements 1 et 3-4). Aucun changement significatif n’a été observé pré et post-extubation. L’AEdi tonique chez les patients plus âgés (>1an, n=27) était négligeable en phases de respiration normale (0.6mcv). Par contre, une AEdi tonique significative (>1mcv et >10%) a été observée à au moins un moment durant le séjour de 10 (37%) patients. La bronchiolite est le seul facteur indépendant associé à l’activité tonique diaphragmatique. Conclusion : Chez les nourrissons, l’AEdi tonique persiste après l’extubation et elle peut être réactivée dans certaines situations pathologiques chez les enfants plus âgés. Elle semble être un indicateur de l’effort du patient pour maintenir son VPFE. D’autres études devraient être menées afin de déterminer si la surveillance de l’AEdi tonique pourrait faciliter la détection de situations de ventilation inappropriée.
Resumo:
Introduction : Les nourrissons, vu la grande compliance de leur cage thoracique, doivent maintenir activement leur volume pulmonaire de fin d’expiration (VPFE). Ceci se fait par interruption précoce de l’expiration, et par le freinage expiratoire au niveau laryngé et par la persistance de la contraction des muscles inspiratoires. Chez les nourrissons ventilés mécaniquement, notre équipe a montré que le diaphragme est activé jusqu’à la fin de l’expiration (activité tonique). Il n’est pas clair si cette activité tonique diaphragmatique compense pour l’absence de freinage laryngé liée à l’intubation endotrachéale. Objectif : Notre objectif est de déterminer si l’activité tonique diaphragmatique persiste après l’extubation chez les nourrissons et si elle peut être observée chez les enfants plus âgés. Méthode : Ceci est une étude observationnelle longitudinale prospective de patients âgés de 1 semaine à 18 ans admis aux soins intensifs pédiatriques (SIP), ventilés mécaniquement pour >24 heures et avec consentement parental. L’activité électrique du diaphragme (AEdi) a été enregistrée à l’aide d’une sonde nasogastrique spécifique à 4 moments durant le séjour aux SIP : en phase aigüe, pré et post-extubation et au congé. L’AEdi a été analysée de façon semi-automatique. L’AEdi tonique a été définie comme l’AEdi durant le dernier quartile de l’expiration. Résultats : 55 patients avec un âge médian de 10 mois (écart interquartile: 1-48) ont été étudiés. Chez les nourrissons (<1an, n=28), l’AEdi tonique en pourcentage de l’activité inspiratoire était de 48% (30-56) en phase aigüe, 38% (25-44) pré-extubation, 28% (17-42) post-extubation et 33% (22-43) au congé des SIP (p<0.05, ANOVA, avec différence significative entre enregistrements 1 et 3-4). Aucun changement significatif n’a été observé pré et post-extubation. L’AEdi tonique chez les patients plus âgés (>1an, n=27) était négligeable en phases de respiration normale (0.6mcv). Par contre, une AEdi tonique significative (>1mcv et >10%) a été observée à au moins un moment durant le séjour de 10 (37%) patients. La bronchiolite est le seul facteur indépendant associé à l’activité tonique diaphragmatique. Conclusion : Chez les nourrissons, l’AEdi tonique persiste après l’extubation et elle peut être réactivée dans certaines situations pathologiques chez les enfants plus âgés. Elle semble être un indicateur de l’effort du patient pour maintenir son VPFE. D’autres études devraient être menées afin de déterminer si la surveillance de l’AEdi tonique pourrait faciliter la détection de situations de ventilation inappropriée.
Resumo:
On the basis of the knowledge that the entheses between the plantar fascia and the calcaneus may exhibit a varied pathology, we considered the need to value the pathological factors by illustrating the anatomical changes in the Plantar Fascia Syndrome (PFS) with easy-to-obtain images which allowed us to substantiate our claims. Accordingly, we analized the anatomical (Orts Llorca, 1977; Llusá, 2007; Sobotta, 2007; Domenech Mateu, 2012; Rodriguez Baeza 2012) and biomechanical (Arandes, 1956; Viladot 1979; Caturla, 2001; Safe, 2001) literature in order to better know the location of the pathology and also to assess the functional reasons that could favor this disease. A study of the affected area by Nuclear Magnetic Resonance (NMR) revealed the presence of bone affections such as bone edema, subchondral lesions and several other bone pathologies together with fascia intrinsic injuries such as myxoid degeneration, intrasubstance fissures and perifascial edematous lesions (Larroca, 2013; Conejero, 2014). Injuries not properly treated during the acute phase can evolve into chronic processes which, month after month, become ever more difficult to resolve. In addition, as seen throughout this study, there are changes in the anatomical normality of the foot usually associated with pathological conditions of the plantar fascia. Once the pathological aspects of PFS are identified and their location is established, clinical manifestations should be registered in order to define this syndrome. Pain is the main symptom in patients with PFS and is associated, in many occasions, with tightness or stiffness of the plantar area, limited mobility of the arch of the ankle and, inevitably, a progressive functional deterioration. Thus, that sharp and stabbing pain felt when one puts the foot on the floor after a period of rest located in the front lower face of the heel and irradiating and/or projecting to the middle of the sole of the foot would be synonymous with Plantar Fascia Syndrome (PFS)...
Resumo:
The impact of intravenous (IV) beta-blockers before primary percutaneous coronary intervention (PPCI) on infarct size and clinical outcomes is not well established. This study sought to conduct the first double-blind, placebo-controlled international multicenter study testing the effect of early IV beta-blockers before PPCI in a general ST-segment elevation myocardial infarction (STEMI) population. STEMI patients presenting <12 h from symptom onset in Killip class I to II without atrioventricular block were randomized 1:1 to IV metoprolol (2 × 5-mg bolus) or matched placebo before PPCI. Primary endpoint was myocardial infarct size as assessed by cardiac magnetic resonance imaging (CMR) at 30 days. Secondary endpoints were enzymatic infarct size and incidence of ventricular arrhythmias. Safety endpoints included symptomatic bradycardia, symptomatic hypotension, and cardiogenic shock. A total of 683 patients (mean age 62 ± 12 years; 75% male) were randomized to metoprolol (n = 336) or placebo (n = 346). CMR was performed in 342 patients (54.8%). Infarct size (percent of left ventricle [LV]) by CMR did not differ between the metoprolol (15.3 ± 11.0%) and placebo groups (14.9 ± 11.5%; p = 0.616). Peak and area under the creatine kinase curve did not differ between both groups. LV ejection fraction by CMR was 51.0 ± 10.9% in the metoprolol group and 51.6 ± 10.8% in the placebo group (p = 0.68). The incidence of malignant arrhythmias was 3.6% in the metoprolol group versus 6.9% in placebo (p = 0.050). The incidence of adverse events was not different between groups. In a nonrestricted STEMI population, early intravenous metoprolol before PPCI was not associated with a reduction in infarct size. Metoprolol reduced the incidence of malignant arrhythmias in the acute phase and was not associated with an increase in adverse events.
Resumo:
Biomarkers are nowadays essential tools to be one step ahead for fighting disease, enabling an enhanced focus on disease prevention and on the probability of its occurrence. Research in a multidisciplinary approach has been an important step towards the repeated discovery of new biomarkers. Biomarkers are defined as biochemical measurable indicators of the presence of disease or as indicators for monitoring disease progression. Currently, biomarkers have been used in several domains such as oncology, neurology, cardiovascular, inflammatory and respiratory disease, and several endocrinopathies. Bridging biomarkers in a One Health perspective has been proven useful in almost all of these domains. In oncology, humans and animals are found to be subject to the same environmental and genetic predisposing factors: examples include the existence of mutations in BR-CA1 gene predisposing to breast cancer, both in human and dogs, with increased prevalence in certain dog breeds and human ethnic groups. Also, breast feeding frequency and duration has been related to a decreased risk of breast cancer in women and bitches. When it comes to infectious diseases, this parallelism is prone to be even more important, for as much as 75% of all emerging diseases are believed to be zoonotic. Examples of successful use of biomarkers have been found in several zoonotic diseases such as Ebola, dengue, leptospirosis or West Nile virus infections. Acute Phase Proteins (APPs) have been used for quite some time as biomarkers of inflammatory conditions. These have been used in human health but also in the veterinary field such as in mastitis evaluation and PRRS (porcine respiratory and reproductive syndrome) diagnosis. Advantages rely on the fact that these biomarkers can be much easier to assess than other conventional disease diagnostic approaches (example: measured in easy to collect saliva samples). Another domain in which biomarkers have been essential is food safety: the possibility to measure exposure to chemical contaminants or other biohazards present in the food chain, which are sometimes analytical challenges due to their low bioavailability in body fluids, is nowadays a major breakthrough. Finally, biomarkers are considered the key to provide more personalized therapies, with more efficient outcomes and fewer side effects. This approach is expected to be the correct path to follow also in veterinary medicine, in the near future.
Resumo:
Spinal Cord Injury (SCI) is a devastating condition for human and animal health. In SCI particularly, neurons, oligodendrocytes precursor cells, and mature oligodendrocytes are highly vulnerable to the toxic microenvironment after the lesion and susceptible to the elevated levels of noxious stimuli. Thus the regenerative response of the organism in case of SCI is significantly reduced, and only little spontaneous amelioration is observed in lesioned patients during the early phases. This work mainly focuses on studying and characterizing the modification induced by the SCI in a preclinical animal model. We investigated the ECM composition in the spinal cord segments surrounding the primary lesion site at a gene expression level. We found Timp1 and CD44 as a crucial hub in the secondary cascade of SCI in both spinal cord segments surrounding the lesion site. Interestingly, a temporal and anatomical difference in gene expression, indicating a complex regulation of ECM genes after SCI that could be used as a tool for regenerative medicine. We also investigated the modification in synaptic plasticity-related gene expression in spinal and supraspinal areas involved in motor control. We confirmed the anatomical and temporal difference in gene expression in spinal cord tissue. This analysis suggests that a molecular mapping of the lesion-induced modification could be a useful tool for regenerative medicine. In the last part, we evaluated the efficacy of an implantable biopolymer loaded with an anti-inflammatory drug and a pro-myelinating agent on the acute phase of SCI in our preclinical model. We found a consistent reduction of the inflammatory state in the spinal lesion site and the cord's surrounding segments. Moreover, we found increased preservation of the spinal cord tissue with a related upregulation of neuronal and oligodendroglial markers after lesion. Our treatment showed effective ameliorating functional outcome and reducing the lesion extension in the chronic phase.
Resumo:
The COVID-19 pandemic, sparked by the SARS-CoV-2 virus, stirred global comparisons to historical pandemics. Initially presenting a high mortality rate, it later stabilized globally at around 0.5-3%. Patients manifest a spectrum of symptoms, necessitating efficient triaging for appropriate treatment strategies, ranging from symptomatic relief to antivirals or monoclonal antibodies. Beyond traditional approaches, emerging research suggests a potential link between COVID-19 severity and alterations in gut microbiota composition, impacting inflammatory responses. However, most studies focus on severe hospitalized cases without standardized criteria for severity. Addressing this gap, the first study in this thesis spans diverse COVID-19 severity levels, utilizing 16S rRNA amplicon sequencing on fecal samples from 315 subjects. The findings highlight significant microbiota differences correlated with severity. Machine learning classifiers, including a multi-layer convoluted neural network, demonstrated the potential of microbiota compositional data to predict patient severity, achieving an 84.2% mean balanced accuracy starting one week post-symptom onset. These preliminary results underscore the gut microbiota's potential as a biomarker in clinical decision-making for COVID-19. The second study delves into mild COVID-19 cases, exploring their implications for ‘long COVID’ or Post-Acute COVID-19 Syndrome (PACS). Employing longitudinal analysis, the study unveils dynamic shifts in microbial composition during the acute phase, akin to severe cases. Innovative techniques, including network approaches and spline-based longitudinal analysis, were deployed to assess microbiota dynamics and potential associations with PACS. The research suggests that even in mild cases, similar mechanisms to hospitalized patients are established regarding changes in intestinal microbiota during the acute phase of the infection. These findings lay the foundation for potential microbiota-targeted therapies to mitigate inflammation, potentially preventing long COVID symptoms in the broader population. In essence, these studies offer valuable insights into the intricate relationships between COVID-19 severity, gut microbiota, and the potential for innovative clinical applications.
Resumo:
Background Distraction osteogenesis (DO) is a method of producing new bone directly from the osteotomy site by gradual traction of the divided bone fragments. Aim The purpose of the present study was to evaluate histomorphometrically whether acute DO would constitute a viable alternative to the conventional continuous distraction treatment and also to verify the capacity of a recombinant human BMP (rhBMP-2) associated with monoolein gel to stimulate bone formation in the acute distraction process. Materials and methods Forty-eight Wistar rats were assigned to three groups: Group 1, treated at a conventional continuous distraction rate (0.5 mm/day), Group 2, treated with acute distraction of 2.5 mm at the time of the surgical procedure, and Group 3, subjected to acute distraction associated with rhBMP-2. The animals from each experimental group were killed at the end of the second or fourth post-operative weeks and the volume fraction of newly formed bone trabeculae was estimated in histological images by a differential point-counting method. Results The results showed that after 2 and 4 weeks, bone volumes in the rhBMP-2 group were significantly higher than in the other groups (P < 0.05), but no significant difference was observed in the volume fraction of newly formed bone between the continuous and acute DO groups. Conclusion In conclusion, the study indicates that rhBMP-2 can enhance the bone formation at acute DO, which may potentially reduce the treatment period and complications related to the distraction procedure. To cite this article:Issa JPM, do Nascimento C, Lamano T, Iyomasa MM, Sebald W, de Albuquerque Jr RF. Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis of rat mandibles.Clin. Oral Impl. Res. 20, 2009; 1286-1292.doi: 10.1111/j.1600-0501.2009.01799.x.
Resumo:
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.
Resumo:
The vascular-stromal compartment of lymph nodes is important for lymph node function, and high endothelial venules (HEVs) play a critical role in controlling the entry of recirculating lymphocytes. In autoimmune and autoinflammatory diseases, lymph node swelling is often accompanied by apparent HEV expansion and, potentially, targeting HEV expansion could be used therapeutically to limit autoimmunity. In previous studies using mostly flow cytometry analysis, we defined three differentially regulated phases of lymph node vascular-stromal growth: initiation, expansion, and the re-establishment of vascular quiescence and stabilization. In this study, we use optical projection tomography to better understand the morphologic aspects of HEV growth upon immunization with ovalbumin/CFA (OVA/CFA). We find HEV elongation as well as modest arborization during the initiation phase, increased arborization during the expansion phase, and, finally, vessel narrowing during the re-establishment of vascular quiescence and stabilization. We also examine acutely enlarged autoinflammatory lymph nodes induced by regulatory T cell depletion and show that HEVs are expanded and morphologically similar to the expanded HEVs in OVA/CFA-stimulated lymph nodes. These results reinforce the idea of differentially regulated, distinct phases of vascular-stromal growth after immunization and suggest that insights gained from studying immunization-induced lymph node vascular growth may help to understand how the lymph node vascular-stromal compartment could be therapeutically targeted in autoimmune and autoinflammatory diseases.
Resumo:
Cyclin-dependent kinases (CDKs) successively phosphorylate the retinoblastoma protein (RB) at the restriction point in G1 phase. Hyperphosphorylation results in functional inactivation of RB, activation of the E2F transcriptional program, and entry of cells into S phase. RB unphosphorylated at serine 608 has growth suppressive activity. Phosphorylation of serines 608/612 inhibits binding of E2F-1 to RB. In Nalm-6 acute lymphoblastic leukemia extracts, serine 608 is phosphorylated by CDK4/6 complexes but not by CDK2. We reasoned that phosphorylation of serines 608/612 by redundant CDKs could accelerate phospho group formation and determined which G1 CDK contributes to serine 612 phosphorylation. Here, we report that CDK4 complexes from Nalm-6 extracts phosphorylated in vitro the CDK2-preferred serine 612, which was inhibited by p16INK4a, and fascaplysin. In contrast, serine 780 and serine 795 were efficiently phosphorylated by CDK4 but not by CDK2. The data suggest that the redundancy in phosphorylation of RB by CDK2 and CDK4 in Nalm-6 extracts is limited. Serine 612 phosphorylation by CDK4 also occurred in extracts of childhood acute lymphoblastic leukemia cells but not in extracts of mobilized CD34+ hemopoietic progenitor cells. This phenomenon could contribute to the commitment of childhood acute lymphocytic leukemia cells to proliferate and explain their refractoriness to differentiation-inducing agents.
Resumo:
The human t(3;21)(q26;q22) translocation is found as a secondary mutation in some cases of chronic myelogenous leukemia during the blast phase and in therapy-related myelodysplasia and acute myelogenous leukemia. One result of this translocation is a fusion between the AML1, MDS1, and EVI1 genes, which encodes a transcription factor of approximately 200 kDa. The role of the AML1/MDS1/EVI1 (AME) fusion gene in leukemogenesis is largely unknown. In this study, we analyzed the effect of the AME fusion gene in vivo by expressing it in mouse bone marrow cells via retroviral transduction. We found that mice transplanted with AME-transduced bone marrow cells suffered from an acute myelogenous leukemia (AML) 5–13 mo after transplantation. The disease could be readily transferred into secondary recipients with a much shorter latency. Morphological analysis of peripheral blood and bone marrow smears demonstrated the presence of myeloid blast cells and differentiated but immature cells of both myelocytic and monocytic lineages. Cytochemical and flow cytometric analysis confirmed that these mice had a disease similar to the human acute myelomonocytic leukemia. This murine model for AME-induced AML will help dissect the molecular mechanism of AML and the molecular biology of the AML1, MDS1, and EVI1 genes.
Resumo:
To evaluate the effects of acute exercise on the TRB3 protein levels and interaction between TRB3/Akt proteins in the hypothalamus of obese rats. In addition, we evaluated the relationship between TRB3 and endoplasmic reticulum stress (ER stress) and verified whether an acute exercise session is able to influence these processes. In the first part of the study, the rats were divided into three groups: control (lean) - fed with a standard rodent chow, DIO - fed with a high fat diet and DIO submitted to a swimming acute exercise protocol (DIO-EXE). In the second part of the study, we used other three groups: control (lean) receiving an intracerebroventricular (i.c.v.) infusion of vehicle, lean receiving an i.c.v. infusion of thapsigargin, and lean receiving an i.c.v infusion of thapsigargin and performing an acute exercise session. Four hours after the exercise session, the food intake was measured and the hypothalamus was dissected and separated for subsequent protein analysis by immunoblotting and Real Time PCR. The acute exercise session reduced the TRB3 protein levels, disrupted the interaction between TRB3/Akt proteins, increased the phosphorylation of Foxo1 and restored the anorexigenic effects of insulin in the hypothalamus of DIO rats. Interestingly, the suppressive effects of acute exercise on TRB3 protein levels may be related, at least in part, to the decrease of ER stress (evaluated though pancreatic ER kinase phosphorylation - pPERK and C/EBP homologous protein - CHOP protein levels) in the hypothalamus. In conclusion, the reduction of hypothalamic TRB3 protein levels mediated by exercise may be associated with the reduction of ER stress. These data provided a new mechanism by which an acute exercise session improves insulin sensitivity in hypothalamus and restores food intake control in obesity.