951 resultados para ab initio CCSD(T) calculations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 7 years, the enediyne anticancer antibiotics have been widely studied due to their DNA cleaving ability. The focus of these antibiotics, represented by kedarcidin chromophore, neocarzinostatin chromophore, calicheamicin, esperamicin A, and dynemicin A, is on the enediyne moiety contained within each of these antibiotics. In its inactive form, the moiety is benign to its environment. Upon suitable activation, the system undergoes a Bergman cycloaromatization proceeding through a 1,4-dehydrobenzene diradical intermediate. It is this diradical intermediate that is thought to cleave double-stranded dna through hydrogen atom abstraction. Semiempirical, semiempiricalci, Hartree–Fock ab initio, and mp2 electron correlation methods have been used to investigate the inactive hex-3-ene-1,5-diyne reactant, the 1,4-dehydrobenzene diradical, and a transition state structure of the Bergman reaction. Geometries calculated with different basis sets and by semiempirical methods have been used for single-point calculations using electron correlation methods. These results are compared with the best experimental and theoretical results reported in the literature. Implications of these results for computational studies of the enediyne anticancer antibiotics are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computationally efficient procedure for modeling the alkaline hydrolysis of esters is proposed based on calculations performed on methyl acetate and methyl benzoate systems. Extensive geometry and energy comparisons were performed on the simple ester methyl acetate. The effectiveness of performing high level single point ab initio energy calculations on the geometries obtained from semiempirical and ab initio methods was determined. The AM1 and PM3 semiempirical methods are evaluated for their ability to model the transition states and intermediates for ester hydrolysis. The Cramer/Truhlar SM3 solvation method was used to determine activation energies. The most computationally efficient way to model the transition states of large esters is to use the PM3 method. The PM3 transition structure can then be used as a template for the design of haptens capable of inducing catalytic antibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we present the gas-phase vibrational spectrum of vinylacetic acid with a focus on the ν = 1−5 vibrational states of the OH stretching transitions. Cross sections for ν = 1, 2, 4 and 5 of the OH stretching vibrational transitions are derived on the basis of the vapor pressure data obtained for vinylacetic acid. Ab initio calculations are used to assist in the band assignments of the experimental spectra, and to determine the threshold for the decarboxylation of vinylacetic acid. When compared to the theoretical energy barrier to decarboxylation, it is found that the νOH = 4 transition with thermal excitation of low frequency modes or rotational motion and νOH = 5 transitions have sufficient energy for the reaction to proceed following overtone excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H2SO4(H2O)n where n = 1–6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller–Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO4–·H3O+)(H2O)n−1 clusters are competitive with the neutral (H2SO4)(H2O)n clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H2SO4(H2O)n clusters are favorable in colder regions of the troposphere (T = 216.65–273.15 K) for n = 1–6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H2SO4–H2O system must contain more than one H2SO4 and are in concert with recent findings(1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PM3 semiempirical quantum-mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02-0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol-' suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol-' imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high-resolution spectroscopic observations, gas electron diffraction data, and high-level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1-0.2 for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1-2 kcal mol-l. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and 0 predict that donor strength follows the order F > 0 > N and acceptor strength follows the order N > 0 > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F-H- - -N bond to be the strongest and the N-H- - -F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two-center repulsive forces brought about by the parameterization of the Gaussian core-core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum-mechanical calculations can be applied to small biologic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the thermodynamics of sulfuric acid dimer hydration using ab initio quantum mechanical methods. For (H2SO4)2(H2O)n where n = 0−6, we employed high-level ab initio calculations to locate the most stable minima for each cluster size. The results presented herein yield a detailed understanding of the first deprotonation of sulfuric acid as a function of temperature for a system consisting of two sulfuric acid molecules and up to six waters. At 0 K, a cluster of two sulfuric acid molecules and one water remains undissociated. Addition of a second water begins the deprotonation of the first sulfuric acid leading to the di-ionic species (the bisulfate anion HSO4−, the hydronium cation H3O+, an undissociated sulfuric acid molecule, and a water). Upon the addition of a third water molecule, the second sulfuric acid molecule begins to dissociate. For the (H2SO4)2(H2O)3 cluster, the di-ionic cluster is a few kcal mol−1 more stable than the neutral cluster, which is just slightly more stable than the tetra-ionic cluster (two bisulfate anions, two hydronium cations, and one water). With four water molecules, the tetra-ionic cluster, (HSO4−)2(H3O+)2(H2O)2, becomes as favorable as the di-ionic cluster H2SO4(HSO4−)(H3O+)(H2O)3 at 0 K. Increasing the temperature favors the undissociated clusters, and at room temperature we predict that the di-ionic species is slightly more favorable than the neutral cluster once three waters have been added to the cluster. The tetra-ionic species competes with the di-ionic species once five waters have been added to the cluster. The thermodynamics of stepwise hydration of sulfuric acid dimer is similar to that of the monomer; it is favorable up to n = 4−5 at 298 K. A much more thermodynamically favorable pathway forming sulfuric acid dimer hydrates is through the combination of sulfuric acid monomer hydrates, but the low concentration of sulfuric acid relative to water vapor at ambient conditions limits that process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H2SO4(H2O)n where n = 1–6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller–Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO4–·H3O+)(H2O)n−1clusters are competitive with the neutral (H2SO4)(H2O)n clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H2SO4(H2O)n clusters are favorable in colder regions of the troposphere (T = 216.65–273.15 K) for n = 1–6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H2SO4–H2O system must contain more than one H2SO4 and are in concert with recent findings(1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the structure and stability of (H3O+)(H2O)8 clusters using a combination of molecular dynamics sampling and high-level ab initio calculations. 20 distinct oxygen frameworks are found within 2 kcal/mol of the electronic or standard Gibbs free energy minimum. The impact of quantum zero-point vibrational corrections on the relative stability of these isomers is quite significant. The box-like isomers are favored in terms of electronic energy, but with the inclusion of zero-point vibrational corrections and entropic effects tree-like isomers are favored at higher temperatures. Under conditions from 0 to 298.15 K, the global minimum is predicted to be a tree-like structure with one dangling singly coordinated water molecule. Above 298.15 K, higher entropy tree-like isomers with two or more singly coordinated water molecules are favored. These assignments are generally consistent with experimental IR spectra of (H3O+)(H2O)8 obtained at 150 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new crystalline compound, Li2PO2N, was synthesized using high temperature solid state methods starting with a stoichiometric mixture of Li2O, P2O5, and P3N5. Its crystal structure was determined ab initio from powder X-ray diffraction. The compound crystallizes in the orthorhombic space group Cmc2(1) (# 36) with lattice constants a = 9.0692(4) angstrom, b = 53999(2) angstrom, and c = 4.6856(2) angstrom. The crystal structure of SD-Li2PO2N consists of parallel arrangements of anionic chains formed of corner sharing (PO2N2) tetrahedra. The chains are held together by Li+ cations. The structure of the synthesized material is similar to that predicted by Du and Holzwarth on the basis of first principles calculations (Phys. Rev. B 81,184106 (2010)). The compound is chemically and structurally stable in air up to 600 degrees C and in vacuum up to 1050 degrees C. The Arrhenius activation energy of SD-Li2PO2N in pressed pellet form was determined from electrochemical impedance spectroscopy measurements to be 0.6 eV, comparable to that of the glassy electrolyte LiPON developed at Oak Ridge National Laboratory. The minimum activation energies for Li ion vacancy and interstitial migrations are computed to be 0.4 eV and 0.8 eV, respectively. First principles calculations estimate the band gap of SD-Li2PO2N to be larger than 6 eV. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a combined experimental and theoretical study of the electronic transport through single-molecule junctions based on nitrile-terminated biphenyl derivatives. Using a scanning tunneling microscope-based break-junction technique, we show that the nitrile-terminated compounds give rise to well-defined peaks in the conductance histograms resulting from the high selectivity of the N-Au binding. Ab initio calculations have revealed that the transport takes place through the tail of the LUMO. Furthermore, we have found both theoretically and experimentally that the conductance of the molecular junctions is roughly proportional to the square of the cosine of the torsion angle between the two benzene rings of the biphenyl core, which demonstrates the robustness of this structure-conductance relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined spectroscopic and ab initio theoretical study of the doubly hydrogen-bonded complex of 2-pyridone (2PY) with NH3 has been performed. The S-1 <- S-0 spectrum extends up to approximate to 1200 cm(-1) above the 0(0)(0) band, close to twice the range observed for 2PY. The S-1 state nonradiative decay for vibrations above approximate to 300 cm(-1) in the NH3 complex is dramatically slowed down relative to bare 2PY. Also, the Delta v=2,4,... overtone bands of the v(1)' and v(2)' out-of-plane vibrations that dominate the low-energy spectral region of 2PY are much weaker or missing for 2PY center dot NH3, which implies that the bridging (2PY)NH center dot center dot center dot NH3 and H2NH center dot center dot center dot O=C H-bonds clamp the 2PY at a planar geometry in the S-1 state. The mass-resolved UV vibronic spectra of jet-cooled 2PY center dot NH3 and its H/D mixed isotopomers are measured using two-color resonant two-photon ionization spectroscopy. The S-0 and S-1 equilibrium structures and normal-mode frequencies are calculated by density functional (B3LYP) and correlated ab initio methods (MP2 and approximate second-order coupled-cluster, CC2). The S-1 <- S-0 vibronic assignments are based on configuration interaction singles (CIS) and CC2 calculations. A doubly H-bonded bridged structure of C-S symmetry is predicted, in agreement with that of Held and Pratt [J. Am. Chem. Soc. 1993, 115, 9718]. While the B3LYP and MP2 calculated rotational constants are in very good agreement with experiment, the calculated H2NH center dot center dot center dot O=C H-bond distance is approximate to 0.7 angstrom shorter than that derived by Held and Pratt. On the other hand, this underlines their observation that ammonia can act as a strong H-bond donor when built into an H-bonded bridge. The CC2 calculations predict the H2NH center dot center dot center dot O distance to increase by 0.2 angstrom upon S-1 <- S-0 electronic excitation, while the (2PY)NH center dot center dot center dot NH3 H-bond remains nearly unchanged. Thus, the expansion of the doubly H-bonded bridge in the excited state is asymmetric and almost wholly due to the weakening of the interaction of ammonia with the keto acceptor group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binary H2SO4−H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0−6. Because it is a strong acid−base system, H2SO4−NH2CH3 quickly forms a tightly bound HSO4−−NH3CH3+ complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4−NH2CH3 is −21.8 kcal mol−1 compared with −16.8 kcal mol−1 for H2SO4−NH3 and −12.8 kcal mol−1 for H2SO4−H2O. Adding one to two water molecules to the H2SO4−NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4−NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binary H2SO4-H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0-6. Because it is a strong acid-base system, H2SO4-NH2CH3 quickly forms a tightly bound HSO4(-)-NH3CH3(+) complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4-NH2CH3 is -21.8 kcal mol(-1) compared with -16.8 kcal mol(-1) for H2SO4-NH3 and -12.8 kcal mol(-1) for H2SO4-H2O. Adding one to two water molecules to the H2SO4-NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4-NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a molecular modeling study based on ab initio and classical molecular dynamics calculations, for the investigation of the tridimensional structure and supramolecular assembly formation of heptapyrenotide oligomers in water solution. Our calculations show that free oligomers self-assemble in helical structures characterized by an inner core formed by π- stacked pyrene units, and external grooves formed by the linker moieties. The coiling of the linkers has high ordering, dominated by hydrogen-bond interactions among the phosphate and amide groups. Our models support a mechanism of longitudinal supramolecular oligomerization based on interstrand pyrene intercalation. Only a minimal number of pyrene units intercalate at one end, favoring formation of very extended longitudinal chains, as also detected by AFM experiment. Our results provide a structural explanation of the mechanism of chirality amplification in 1:1 mixtures of standard heptapyrenotides and modified oligomers with covalently linked deoxycytidine, based on selective molecular recognition and binding of the nucleotide to the groove of the left-wound helix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio calculations of Afρ are presented using Mie scattering theory and a Direct Simulation Monte Carlo (DSMC) dust outflow model in support of the Rosetta mission and its target 67P/Churyumov-Gerasimenko (CG). These calculations are performed for particle sizes ranging from 0.010 μm to 1.0 cm. The present status of our knowledge of various differential particle size distributions is reviewed and a variety of particle size distributions is used to explore their effect on Afρ , and the dust mass production View the MathML sourcem˙. A new simple two parameter particle size distribution that curtails the effect of particles below 1 μm is developed. The contributions of all particle sizes are summed to get a resulting overall Afρ. The resultant Afρ could not easily be predicted a priori and turned out to be considerably more constraining regarding the mass loss rate than expected. It is found that a proper calculation of Afρ combined with a good Afρ measurement can constrain the dust/gas ratio in the coma of comets as well as other methods presently available. Phase curves of Afρ versus scattering angle are calculated and produce good agreement with observational data. The major conclusions of our calculations are: – The original definition of A in Afρ is problematical and Afρ should be: qsca(n,λ)×p(g)×f×ρqsca(n,λ)×p(g)×f×ρ. Nevertheless, we keep the present nomenclature of Afρ as a measured quantity for an ensemble of coma particles.– The ratio between Afρ and the dust mass loss rate View the MathML sourcem˙ is dominated by the particle size distribution. – For most particle size distributions presently in use, small particles in the range from 0.10 to 1.0 μm contribute a large fraction to Afρ. – Simplifying the calculation of Afρ by considering only large particles and approximating qsca does not represent a realistic model. Mie scattering theory or if necessary, more complex scattering calculations must be used. – For the commonly used particle size distribution, dn/da ∼ a−3.5 to a−4, there is a natural cut off in Afρ contribution for both small and large particles. – The scattering phase function must be taken into account for each particle size; otherwise the contribution of large particles can be over-estimated by a factor of 10. – Using an imaginary index of refraction of i = 0.10 does not produce sufficient backscattering to match observational data. – A mixture of dark particles with i ⩾ 0.10 and brighter silicate particles with i ⩽ 0.04 matches the observed phase curves quite well. – Using current observational constraints, we find the dust/gas mass-production ratio of CG at 1.3 AU is confined to a range of 0.03–0.5 with a reasonably likely value around 0.1.