937 resultados para Zea mays L


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pathogenesis-related proteins from intercellular fluid washings of stressed barley (Hordeum vulgare L.) leaves were analyzed to determine their binding to various water-insoluble polysaccharides. Three proteins (19, 16, and 15 kD) bound specifically to several water-insoluble β-1,3-glucans. Binding of the barley proteins to pachyman occurred quickly at 22°C at pH 5.0, even in the presence of 0.5 m NaCl, 0.2 m urea, and 1% (v/v) Triton X-100. Bound barley proteins were released by acidic treatments or by boiling in sodium dodecyl sulfate. Acid-released barley proteins could bind again specifically and singly to pachyman. Water-soluble laminarin and carboxymethyl-pachyman competed for the binding of the barley proteins to pachyman. The N-terminal sequence of the 19-kD barley β-1,3-glucan-binding protein showed near identity to the barley seed protein BP-R and high homology to other thaumatin-like (TL) permatins. The 16-kD barley protein was also homologous to TL proteins, whereas the 15-kD barley protein N-terminal sequence was identical to the pathogenesis-related Hv-1 TL protein. Antifungal barley protein BP-R and corn (Zea mays) zeamatin were isolated by binding to pachyman. Two extracellular proteins from stressed pea (Pisum sativum L.) also bound to pachyman and were homologous to TL proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor L. Moench) has two isozymes of the cyanogenic β-glucosidase dhurrinase: dhurrinase-1 (Dhr1) and dhurrinase-2 (Dhr2). A nearly full-length cDNA encoding dhurrinase was isolated from 4-d-old etiolated seedlings and sequenced. The cDNA has a 1695-nucleotide-long open reading frame, which codes for a 565-amino acid-long precursor and a 514-amino acid-long mature protein, respectively. Deduced amino acid sequence of the sorghum Dhr showed 70% identity with two maize (Zea mays) β-glucosidase isozymes. Southern-blot data suggested that β-glu-cosidase is encoded by a small multigene family in sorghum. Northern-blot data indicated that the mRNA corresponding to the cloned Dhr cDNA is present at high levels in the node and upper half of the mesocotyl in etiolated seedlings but at low levels in the root—only in the zone of elongation and the tip region. Light-grown seedling parts had lower levels of Dhr mRNA than those of etiolated seedlings. Immunoblot analysis performed using maize-anti-β-glucosidase sera detected two distinct dhurrinases (57 and 62 kD) in sorghum. The distribution of Dhr activity in different plant parts supports the mRNA and immunoreactive protein data, suggesting that the cloned cDNA corresponds to the Dhr1 (57 kD) isozyme and that the dhr1 gene shows organ-specific expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endosperm development in Zea mays is characterized by a period of intense mitotic activity followed by a period in which mitosis is essentially eliminated and the cell cycle becomes one of alternating S and G phases, leading to endoreduplication of the nuclear DNA. The endosperm represents a significant contribution to the grain yield of maize; thus, methods that facilitate the study of cellular kinetics may be useful in discerning cellular and molecular components of grain yield. Two mathematical models have been developed to describe the kinetics of endosperm growth. The first describes the kinetics of mitosis during endosperm development; the second describes the kinetics of DNA endoreduplication during endosperm development. The mitotic model is a modification of standard growth curves. The endoreduplication model is composed of six differential equations that represent the progression of nuclei from one DNA content to another during the endoreduplication process. Total nuclei number per endosperm and the number of 3C, 6C, 12C, 24C, 48C, and 96C nuclei per endosperm (C is the haploid DNA content per nucleus) for inbred W64A from 8 to 18 days after pollination were determined by flow cytometry. The results indicate that the change in number of nuclei expressed as a function of the number of days after pollination is the same from one yearly crop to another. These data were used in the model to determine the endosperm growth rate, the maximum nuclei number per endosperm, and transition rates from one C value to the next higher C value. The kinetics of endosperm development are reasonably well represented by the models. Thus, the models provide a means to quantify the complex pattern of endosperm development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report here the identification of a pollen-specific gene from Zea mays that contains multiple Ser-(Pro)n repeats, the motif found in the cell wall-associated extensins. Sequence analysis reveals that the encoded protein has a putative globular domain at the N terminus and an extensin-like domain at the C terminus. The Pex1 (pollen extensin-like) gene is expressed exclusively in pollen, not in vegetative or female tissues, and is not induced in leaves upon wounding. We propose that the encoded protein may have a role in reproduction, either as a structural element deposited in the pollen tube wall during its rapid growth or as a sexual recognition molecule that interacts with partner molecules in the pistil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Se desconoce el efecto del sulfato de bario en los ecosistemas acuáticos donde se realizan actividades hidrocarburíferas y que vienen incrementándose a nivel nacional. Por tal motivo, se evaluó el riesgo ecológico del sulfato de bario empleando la respuesta ecotoxicológica de doce organismos no destinatarios a fin de conocer los posibles efectos que este compuesto pudiera estar ocasionando a los organismos relacionados a los ecosistemas marinos y epicontinentales donde se desarrollan actividades hidrocarburíferas. Las pruebas ecotoxicológicas incluyeron a las microalgas Isochrysis sp., Chlorella sp., las plantas terrestres Medicago sativa y Zea mays, los crustáceos Daphnia sp., Emerita analoga y Apohyale sp., al equinodermo Tetrapygus niger, al insecto acuático Chironomus calligraphus, y a los peces Odontesthes regia regia, Poecilia reticulata y Paracheirodon innesi. Las mediciones de los parámetros y protocolos para las pruebas como la determinación del riesgo ecológico siguieron las pautas y recomendaciones de la USEPA y otros autores. De los principales resultados ecotoxicológicos con sulfato de bario y sus formas solubles, se obtuvo un efecto negativo del sulfato de bario sobre el crecimiento celular de la microalga epicontinental Chlorella sp. (96 h), que registró una concentración de inhibición media (CI50) de 0,1 g/L y una concentración efectiva no observable (NOEC) de 0,02 g/L. Así mismo, se obtuvo un efecto negativo del bario sobre el crecimiento foliar de la planta terrestre monocotiledónea Z. mays (10 d) que registró una concentración efectiva media (CE50) de 0,0011 g/L y una NOEC de 0,0002 g/L. Finalmente, se concluye que existe alto riesgo ecológico (RQ) del sulfato de bario (RQ = 1,224) y sus formas solubles (RQ = 37 500) empleando la respuesta ecotoxicológica de doce organismos no destinatarios.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite a century's knowledge that soluble aluminum (Al) is associated with acid soils and poor plant growth, it is still uncertain how Al exerts its deleterious effects. Hypotheses include reactions of Al with components of the cell wall, plasmalemma, or cytoplasm of cells close to the root tip, thereby reducing cell expansion and root growth. Digital microscopy was used to determine the initial injuries of soluble Al to mungbean (Vigna radiata L.) roots. Roots of young seedlings were marked with activated carbon particles and grown in 1 mm CaCl2 solution at pH 6 for ca. 100 min (control period), and AlCl3 solution was added to ensure a final concentration of 50 muM Al (pH 4). Further studies were conducted on the effects of pH 4 with and without 50 muM Al. Four distinct, but possibly related, initial detrimental effects of soluble Al were noted. First, there was a 56-75% reduction in the root elongation rate, first evident 18-52 min after the addition of Al, root elongation continuing at a decreased rate for ca. 20 It. Decreasing solution pH from 6 to 4 increased the root elongation rate 4-fold after 5 min, which decreased to close to the original rate after 130 min. The addition of Al during the period of rapid growth at pH 4 reduced the root elongation rate by 71% 14 min after the addition of Al. The activated carbon marks on the roots showed that, during the control period, the zone of maximum root growth occurred at 2,200-5,100 mum from the root tip (i.e. the cell elongation zone). It was there that Al first exerted its detrimental effect and low pH increased root elongation. Second, soluble Al prevented the progress of cells from the transition to the elongation phase, resulting in a considerable reduction of root growth over the longer term. The third type of soluble Al injury occurred after exposure for ca. 4 h to 50 mum Al when a kink developed at 2,370 mum from the root tip. Fourth, ruptures of the root epidermal and cortical cells at 1,900-2,300 mum from the tip occurred greater than or equal to4.3 h after exposure to soluble Al. The timing and location of Al injuries support the contention that Al initially reduces cell elongation, thus decreasing root growth and causing damage to epidermal and cortical cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+)-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+) channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+) influx. We further suggest that K(+) influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foi usado os sistema de irrigacao por aspersores em linhas para estudar o comportamento das culturas do milho e do caupi com diferentes populacoes de plantas em plantio isolados e consorciados, com a aplicacao de diferentes niveis de agua. As producoes de graos das duas culturas aumentaram com o incremento das laminas d'agua aplicadas; o milho apresentou maior resposta que o cauppi. O consorcio reduziu produtividade das culturas. As producoes do milho, para as tres populacoes, variaram de 44% a 83% em relacao ao plantio isolado; o decrescimo nas producoes de caupi foi mais significativo quando consorciado com as maiores populacoes de milho. A disponibilidade de agua no solo foi determinante paraa a resposta de milho a populacao. A maior producao de milho isolado para a menor populacao de plantas (20.000 plantas/ha) foi obtida com uma lamina d'agua de 356 mm, ao passo que para as maiores populacoes (40.000 e 60.000 plantas/ha) as producoes aumentaram linearmente com as laminas d'agua aplicadas. A producao de milho consorciado tambem aumentou linearmente em relacao as laminas d'agua aplicadas. A producao de milho consorciado tambem aumentou linearmente em relacao as laminas d'agua aplicadas, enquanto o caupi nao mostrou resposta significativa. O milho mostrou-se mais competitivo no consorcio com a aplicacao das maiores laminas d'agua para todas as populacoes exceto para a menor (10.000 planta/ha), quando a producao, proporcional do caupi foi semelhante a do milho. Os valores calculados para o Indice (...).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fifty-one experiments on maize -beans and 34 on maize-cowpea intercropping systems conducted mostly in semiarid Northeast Brazil were analysed to get an understanding of the performance of these intercrops in terms of their productivity as well as stability. Both the intercrop systems produced higher yields over their respective sole crops under a wide range of agroclimates; the average advantage with maize-beans was 32%, while that from maize-cowpea was 41%. The optimum row proportion for maize-beans was one maize: three beans, requiring 59% of sole crop maize population and 75% sole bean population. In maize-cowpea, alternate rows or one maize: two cowpea arrangement with about 50% of sole maize density and 100% of sole cowpea population seemed to be optimum. The intercrops failed less frequently compared to sole crops to meet specified incomes or yields. Sorghum seemed to be a good alternative to the traditional cereal because of its improved and consistent performance. Future research needs are discussed for further yield improvement in these two intercrop system.s

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloid es, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus commun is L., Canavalia ensiform is, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1) and between the banana rows (location 2). There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.