886 resultados para Work hardening rate
Resumo:
DeLone and McLean (1992, p. 16) argue that the concept of “system use” has suffered from a “too simplistic definition.” Despite decades of substantial research on system use, the concept is yet to receive strong theoretical scrutiny. Many measures of system use and the development of measures have been often idiosyncratic and lack credibility or comparability. This paper reviews various attempts at conceptualization and measurement of system use and then proposes a re-conceptualization of it as “the level of incorporation of an information system within a user’s processes.” The definition is supported with the theory of work systems, system, and Key-User-Group considerations. We then go on to develop the concept of a Functional- Interface-Point (FIP) and four dimensions of system usage: extent, the proportion of the FIPs used by the business process; frequency, the rate at which FIPs are used by the participants in the process; thoroughness, the level of use of information/functionality provided by the system at an FIP; and attitude towards use, a set of measures that assess the level of comfort, degree of respect and the challenges set forth by the system. The paper argues that the automation level, the proportion of the business process encoded by the information system has a mediating impact on system use. The article concludes with a discussion of some implications of this re-conceptualization and areas for follow on research.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
It is now widely recognised that the creative industries constitute an important and growing global economic sector (Cunningham, 2007). Career development programs for the creative industries sector are an international priority (Guile, 2007) which faces several key challenges. These challenges relate to the unique nature of the creative industries. In the creative industries it is thus of critical importance that tertiary work-integrated learning programs focus on more than just training students to become employees: they must also focus on developing the experience and employability of students who will undertake non-conventional career paths. One challenge for work-integrated learning programs in the creative industries is that there is little professional tradition of internships; many employers are not experienced in work-integrated learning participation, and many academics are not familiar with work-integrated learning. This paper reports on the results of an evaluative research program undertaken one year after the launch of the Queensland University of Technology’s (Brisbane, Australia) Creative Industries Transitions to New Professional Environments work-integrated learning program, focusing particularly on key themes and issues identified in interviews with the program’s industry partners and academic staff.
Resumo:
For many people, a relatively large proportion of daily exposure to a multitude of pollutants may occur inside an automobile. A key determinant of exposure is the amount of outdoor air entering the cabin (i.e. air change or flow rate). We have quantified this parameter in six passenger vehicles ranging in age from 18 years to <1 year, at three vehicle speeds and under four different ventilation settings. Average infiltration into the cabin with all operable air entry pathways closed was between 1 and 33.1 air changes per hour (ACH) at a vehicle speed of 60 km/h, and between 2.6 and 47.3 ACH at 110 km/h, with these results representing the most (2005 Volkswagen Golf) and least air-tight (1989 Mazda 121) vehicles, respectively. Average infiltration into stationary vehicles parked outdoors varied between ~0 and 1.4 ACH and was moderately related to wind speed. Measurements were also performed under an air recirculation setting with low fan speed, while airflow rate measurements were conducted under two non-recirculate ventilation settings with low and high fan speeds. The windows were closed in all cases, and over 200 measurements were performed. The results can be applied to estimate pollutant exposure inside vehicles.
Resumo:
Previous research has indicated that road crashes are the most common form of work related fatalities (Haworth et al., 2000). Historically, industry has often taken a “silver bullet” approach developing and implementing a single countermeasure to address all their work related road safety issues, despite legislative requirements to discharge obligations through minimising risk and enhancing safety. This paper describes the results and implications from a series of work related road safety audits that were undertaken across five organisations to determine deficiencies in each organisation‟s safe driving management and practice. Researchers conducted a series of structured interviews, reviewed documentation relating to work related driving, and analysed vehicle related crash and incident records to determine each organisation‟s current situation in the management of work related road safety and driver behaviour. A number of consistent themes and issues across each organisation were identified relating to managing driver behaviour, organisational policies, incident recording and reporting, communication and education, and formalisation of key work related road safety strategies. Although organisations are required to undertake risk reduction strategies for all work related driving, the results of the research suggest that many organisations fail to systematically manage driver behaviour and mitigate work related road safety risk. Future improvements in work related road safety will require organisations to firstly acknowledge the high risk associated with drivers driving for work and secondly adopt comprehensive risk mitigation strategies in a similar manner to managing other workplace hazards.
Resumo:
Part-time employment presents a conundrum in that it facilitates work-life priorities, while also, compared to equivalent full-time roles, attracting penalties such as diminished career prospects and lower commensurate remuneration. Recently, some promising theoretical developments in the job/work design literature suggest that consideration of work design may redress some of the penalties associated with part-time work. Adopting the framework of the Elaborated Model of Work Design by Parker and colleagues (2001), we examined this possibility through interviews with part-time professional service employees and their supervisors. The findings revealed that in organizations characterised by cultural norms of extended working hours and a singular-focused commitment to work, part-time roles were often inadequately re-designed when adapted from full-time arrangements. The findings also demonstrated that certain work design characteristics (e.g. predictability of work-flow, interdependencies with co-workers) render some roles more suitable for part-time arrangements than others. The research provides insights into gaps between policy objectives and outcomes associated with part-time work, challenges assumptions about the limitations of part-time roles, and suggests re-design strategies for more effective part-time arrangements.
Resumo:
Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds.
Resumo:
Vitamin A deficiency (VAD) is a serious problem in developing countries, affecting approximately 127 million children of preschool age and 7.2 million pregnant women each year. However, this deficiency is readily treated and prevented through adequate nutrition. This can potentially be achieved through genetically engineered biofortification of staple food crops to enhance provitamin A (pVA) carotenoid content. Bananas are the fourth most important food crop with an annual production of 100 million tonnes and are widely consumed in areas affected by VAD. However, the fruit pVA content of most widely consumed banana cultivars is low (~ 0.2 to 0.5 ìg/g dry weight). This includes cultivars such as the East African highland banana (EAHB), the staple crop in countries such as Uganda, where annual banana consumption is approximately 250 kg per person. This fact, in addition to the agronomic properties of staple banana cultivars such as vegetative reproduction and continuous cropping, make bananas an ideal target for pVA enhancement through genetic engineering. Interestingly, there are banana varieties known with high fruit pVA content (up to 27.8 ìg/g dry weight), although they are not widely consumed due to factors such as cultural preference and availability. The genes involved in carotenoid accumulation during banana fruit ripening have not been well studied and an understanding of the molecular basis for the differential capacity of bananas to accumulate carotenoids may impact on the effective production of genetically engineered high pVA bananas. The production of phytoene by the enzyme phytoene synthase (PSY) has been shown to be an important rate limiting determinant of pVA accumulation in crop systems such as maize and rice. Manipulation of this gene in rice has been used successfully to produce Golden Rice, which exhibits higher seed endosperm pVA levels than wild type plants. Therefore, it was hypothesised that differences between high and low pVA accumulating bananas could be due either to differences in PSY enzyme activity or factors regulating the expression of the psy gene. Therefore, the aim of this thesis was to investigate the role of PSY in accumulation of pVA in banana fruit of representative high (Asupina) and low (Cavendish) pVA banana cultivars by comparing the nucleic acid and encoded amino acid sequences of the banana psy genes, in vivo enzyme activity of PSY in rice callus and expression of PSY through analysis of promoter activity and mRNA levels. Initially, partial sequences of the psy coding region from five banana cultivars were obtained using reverse transcriptase (RT)-PCR with degenerate primers designed to conserved amino acids in the coding region of available psy sequences from other plants. Based on phylogenetic analysis and comparison to maize psy sequences, it was found that in banana, psy occurs as a gene family of at least three members (psy1, psy2a and psy2b). Subsequent analysis of the complete coding regions of these genes from Asupina and Cavendish suggested that they were all capable of producing functional proteins due to high conservation in the catalytic domain. However, inability to obtain the complete mRNA sequences of Cavendish psy2a, and isolation of two non-functional Cavendish psy2a coding region variants, suggested that psy2a expression may be impaired in Cavendish. Sequence analysis indicated that these Cavendish psy2a coding region variants may have resulted from alternate splicing. Evidence of alternate splicing was also observed in one Asupina psy1 coding region variant, which was predicted to produce a functional PSY1 isoform. The complete mRNA sequence of the psy2b coding regions could not be isolated from either cultivar. Interestingly, psy1 was cloned predominantly from leaf while psy2 was obtained preferentially from fruit, suggesting some level of tissue-specific expression. The Asupina and Cavendish psy1 and psy2a coding regions were subsequently expressed in rice callus and the activity of the enzymes compared in vivo through visual observation and quantitative measurement of carotenoid accumulation. The maize B73 psy1 coding region was included as a positive control. After several weeks on selection, regenerating calli showed a range of colours from white to dark orange representing various levels of carotenoid accumulation. These results confirmed that the banana psy coding regions were all capable of producing functional enzymes. No statistically significant differences in levels of activity were observed between banana PSYs, suggesting that differences in PSY activity were not responsible for differences in the fruit pVA content of Asupina and Cavendish. The psy1 and psy2a promoter sequences were isolated from Asupina and Cavendish gDNA using a PCR-based genome walking strategy. Interestingly, three Cavendish psy2a promoter clones of different sizes, representing possible allelic variants, were identified while only single promoter sequences were obtained for the other Asupina and Cavendish psy genes. Bioinformatic analysis of these sequences identified motifs that were previously characterised in the Arabidopsis psy promoter. Notably, an ATCTA motif associated with basal expression in Arabidopsis was identified in all promoters with the exception of two of the Cavendish psy2a promoter clones (Cpsy2apr2 and Cpsy2apr3). G1 and G2 motifs, linked to light-regulated responses in Arabidopsis, appeared to be differentially distributed between psy1 and psy2a promoters. In the untranscribed regulatory regions, the G1 motifs were found only in psy1 promoters, while the G2 motifs were found only in psy2a. Interestingly, both ATCTA and G2 motifs were identified in the 5’ UTRs of Asupina and Cavendish psy1. Consistent with other monocot promoters, introns were present in the Asupina and Cavendish psy1 5’ UTRs, while none were observed in the psy2a 5’ UTRs. Promoters were cloned into expression constructs, driving the â-glucuronidase (GUS) reporter gene. Transient expression of the Asupina and Cavendish psy1 and psy2a promoters in both Cavendish embryogenic cells and Cavendish fruit demonstrated that all promoters were active, except Cpsy2apr2 and Cpsy2apr3. The functional Cavendish psy2a promoter (Cpsy2apr1) appeared to have activity similar to the Asupina psy2a promoter. The activities of the Asupina and Cavendish psy1 promoters were similar to each other, and comparable to those of the functional psy2a promoters. Semi-quantitative PCR analysis of Asupina and Cavendish psy1 and psy2a transcripts showed that psy2a levels were high in green fruit and decreased during ripening, reinforcing the hypothesis that fruit pVA levels were largely dependent on levels of psy2a expression. Additionally, semi-quantitative PCR using intron-spanning primers indicated that high levels of unprocessed psy2a and psy2b mRNA were present in the ripe fruit of Cavendish but not in Asupina. This raised the possibility that differences in intron processing may influence pVA accumulation in Asupina and Cavendish. In this study the role of PSY in banana pVA accumulation was analysed at a number of different levels. Both mRNA accumulation and promoter activity of psy genes studied were very similar between Asupina and Cavendish. However, in several experiments there was evidence of cryptic or alternate splicing that differed in Cavendish compared to Asupina, although these differences were not conclusively linked to the differences in fruit pVA accumulation between Asupina and Cavendish. Therefore, other carotenoid biosynthetic genes or regulatory mechanisms may be involved in determining pVA levels in these cultivars. This study has contributed to an increased understanding of the role of PSY in the production of pVA carotenoids in banana fruit, corroborating the importance of this enzyme in regulating carotenoid production. Ultimately, this work may serve to inform future research into pVA accumulation in important crop varieties such as the EAHB and the discovery of avenues to improve such crops through genetic modification.
The association between objectively measured neighborhood features and walking in middle-aged adults
Resumo:
Purpose: To explore the role of the neighborhood environment in supporting walking Design: Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting: The Brisbane City Local Government Area, Australia, 2007. Subjects: Brisbane residents aged 40 to 65 years. Measures Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis: The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results: After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion: The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease.
Resumo:
Childhood sun exposure has been associated with increased risk of developing melanoma later in life. Sunscreen, children.s preferred method of sun protection, has been shown to reduce skin cancer risk. However, the effectiveness of sunscreen is largely dependent on user compliance, such as the thickness of application. To reach the sun protection factor (SPF) sunscreen must be applied at a thickness of 2mg/cm2. It has been demonstrated that adults tend to apply less than half of the recommended 2mg/cm2. This was the first study to measure the thickness at which children apply sunscreen. We recruited 87 primary school aged children (n=87, median age 8.7, 5-12 years) from seven state schools within one Brisbane education district (32% consent rate). The children were supplied with sunscreen in three dispenser types (pump, squeeze and roll-on) and were asked to use these for one week each. We measured the weight of the sunscreen before and after use, and calculated the children.s body surface area (based on height and weight) and area to which sunscreen was applied (based on children.s self-reported body coverage of application). Combined these measurements resulted in an average thickness of sunscreen application, which was our main outcome measure. We asked parents to complete a self-administered questionnaire which captured information about potential explanatory variables. Children applied sunscreen at a median thickness of 0.48mg/cm2, significantly less than the recommended 2mg/cm2 (p<0.001). When using the roll-on dispenser (median 0.22mg/cm2), children applied significantly less sunscreen thickness, compared to the pump (median 0.75mg.cm2, p<0.001), and squeeze (median 0.57mg/cm2, p<0.001) dispensers. School grade (1-7) was significantly associated with thickness of application (p=0.032), with children in the youngest grades applying the most. Other variables that were significantly associated with the outcome variable included: number of siblings (p=0.001), household annual income (p<0.001), and the number of lifetime sunburns the child had experienced (p=0.007). This work is the first to measure children.s sunscreen application thickness and demonstrates that regardless of their age or the type of dispenser that they use, children do not apply enough sunscreen to reach the advertised SPF. It is envisaged that this study will assist in the formulation of recommendations for future research, practice and policy aimed at improving childhood sun protection to reduce skin cancer incidence in the future.
Resumo:
This volume represents the proceedings of the 13th ENTER conference, held at Lausanne, Switzerland during 2006. The conference brought together academics and practitioners across four tracks, which were eSolutions, refereed research papers, work-in-progress papers, and a Ph.D. workshop. This proceedings contains 40 refereed papers, which is less than the 51 papers presented in 2005. However, the editors advise that the scientific committee was stricter than in previous years, to the extent that the acceptance rate was 50%. A significant change in the current proceedings is the inclusion of extended abstracts of the 23 work-in-progress presentations. The papers cover a diverse range of topics across 16 research streams. This reviewer has adopted the approach of succinctly summarising the contribution of each of the 40-refereed papers, in the order in which they appear...
Resumo:
This volume represents the proceedings of the 13th ENTER conference, held at Lausanne, Switzerland during 2006. The conference brought together academics and practitioners across four tracks, which were eSolutions, refereed research papers, work-in-progress papers, and a Ph.D workshop. This proceedings contains 40 refereed papers, which is less that the 51 papers presented in 2005. However, the editors advise the scientific committee was stricter than in previous years, to the extent that the acceptance rate was 50%. A significant change in the current proceedings is the inclusion of extended abstracts of the 23 work-in-progress presentations. The papers cover a diverse range of topics across 16 research streams. This reviewer has adopted the approach of succinctly summarising the contribution of each of the 40 refereed papers, in the order in which they appear...
Resumo:
Aims: This study determined whether the visibility benefits of positioning retroreflective strips in biological motion configurations were evident at real world road worker sites. Methods: 20 visually normal drivers (M=40.3 years) participated in this study that was conducted at two road work sites (one suburban and one freeway) on two separate nights. At each site, four road workers walked in place wearing one of four different clothing options: a) standard road worker night vest, b) standard night vest plus retroreflective strips on thighs, c) standard night vest plus retroreflective strips on ankles and knees, d) standard night vest plus retroreflective strips on eight moveable joints (full biomotion). Participants seated in stationary vehicles at three different distances (80m, 160m, 240m) rated the relative conspicuity of the four road workers using a series of a standardized visibility and ranking scales. Results: Adding retroreflective strips in the full biomotion configuration to the standard night vest significantly (p<0.001) enhanced perceptions of road worker visibility compared to the standard vest alone, or in combination with thigh retroreflective markings. These visibility benefits were evident at all distances and at both sites. Retroreflective markings at the ankles and knees also provided visibility benefits compared to the standard vest, however, the full biomotion configuration was significantly better than all of the other configurations. Conclusions: These data provide the first evidence that the benefits of biomotion retroreflective markings that have been previously demonstrated under laboratory and closed- and open-road conditions are also evident at real work sites.
Resumo:
An online survey of recent ICT graduates in the workplace was carried out as part of a recent project funded by the Australian Learning and Teaching Council. The survey was concerned with the ICT curriculum in relation to workplace job requirements and university preparation for these requirements. The survey contained quantitative and qualitative components and findings from the former have been published (Koppi et al., 2009). This paper reports on a quantitative comparison of responses from graduates who had workplace experience and those who did not, and a qualitative analysis of text responses from all ICT graduates to open-ended questions concerning the curriculum and their perceived university preparation for the workplace. The overwhelming response from ICT graduates in the workplace was for more industry related learning. These industry relationships included industry involvement, workplace learning and business experience, up-to-date teaching and technologies, practical applications, and real-world activities. A closer relationship of academia and industry was strongly advocated by ICT graduates in the workplace.