930 resultados para Web 2.0 Business Model
Resumo:
Reduced glutathione (GSH) protects cells against injury by oxidative stress and maintains a range of vital functions. In vitro cell cultures have been used as experimental models to study the role of GSH in chemical toxicity in mammals; however, this approach has been rarely used with fish cells to date. The present study aimed to evaluate sensitivity and specificity of three fluorescent dyes for measuring pro-oxidant-induced changes of GSH contents in fish cell lines: monochlorobimane (mBCl), 5-chloromethylfluorescein diacetate (CMFDA) and 7-amino-4-chloromethylcoumarin (CMAC-blue). Two cell lines were studied, the EPC line established from a skin tumour of carp Cyprinus carpio, and BF-2 cells established from fins of bluegill sunfish Lepomis macrochirus. The cells were exposed for 6 and 24 h to low cytotoxic concentrations of pro-oxidants including hydrogen peroxide, paraquat (PQ), copper and the GSH synthesis inhibitor, L-buthionine-SR-sulfoximine (BSO). The results indicate moderate differences in the GSH response between EPC and BF-2 cells, but distinct differences in the magnitude of the GSH response for the four pro-oxidants. Further, the choice of GSH dye can critically affect the results, with CMFDA appearing to be less specific for GSH than mBCl and CMAC-blue.
Resumo:
The aim of the web-based course “Advertising Psychology – The Blog Seminar” was to offer a contemporary teaching design using typical Web 2.0 characteristics such as comments, discussions and social media integration which covers facebook and Twitter support, as nowadays, this is a common part of students’ everyday life. This weblog (blog)-based seminar for Advertising Psychology was set up in order to make the course accessible to students from different campuses in the Ruhr metropolitan area. The technical aspect of the open-source content management system Drupal 6.0 and the didactical course structure, based on Merrill’s five first principles of instruction, are introduced. To date, this blog seminar has been conducted three times with a total of 84 participants, who were asked to rate the course according to the benefits of different didactical elements and with regard to Kirkpatrick’s levels of evaluation model. This model covers a) reactions such as reported enjoyment, perceived usefulness and perceived difficulty, and b) effects on learning through the subjectively reported increase in knowledge and attitude towards the seminar. Overall, the blog seminar was evaluated very positively and can be considered as providing support for achieving the learning objectives. However, a successful blended learning approach should always be tailored to the learning contents and the environment.
Resumo:
Einzelne Projekte bildeten den Anfang für die E-Learning-Integration im Hochschulbereich. Heute, nach dem Ende der großen E-Learning-Förderprojekte, haben sich an vielen Hochschulen feste E-Learning-Einrichtungen etabliert. Learning Management Systeme (LMS) sind flächendeckend Realität. Die Pädagogische Hochschule Ludwigsburg war in der Lage, E-Learning auch strukturell fest in der Hochschulorganisation zu verankern – ein ‚luxuriöser‘ und beruhigend zukunftsfähiger, nachhaltiger Zustand. Didaktische Konzepte sind erprobt, der Einsatz von E-Learning in den Hochschulveranstaltungen vielzählig in allen Fachgebieten etabliert; die technische Realisation stellt kein Problem mehr dar. Das ‚klassische E-Learning‘ sozusagen haben wir hinter uns – was bringt die mobile Zukunft? Genau jetzt ist der richtige Zeitpunkt festzuhalten, welche Umsetzungen und Anwendungen es für E-Learning an der Pädagogischen Hochschule Ludwigsburg gibt – und dies sicher beispielhaft für viele Hochschulen. Welche Projekte bewegen die Hochschule auf diesem Feld, welche Partner wurden gefunden und welche Antworten auf die Grundfragen des E-Learning? UND: Wie soll es weiter gehen auf dem elektronischen Weg der individualisierten Lernumgebungen; welchen Anforderungen stellen wir uns?
Resumo:
Dieser Beitrag zeigt auf, welche Möglichkeiten der Einsatz von Web 3.0 Monitoringtechniken im Stakeholder Management bietet. Das Ziel dieses Managements ist es, unternehmerischenVorhaben zu Akzeptanz und Durchsetzungskraft zu verhelfen, indem Ansprüche an Unternehmensentscheide aktiv in den Managementprozess mit eingebunden werden.Stakeholdermaps stellen diese Ansprüche visuell dar. Sie greifen einerseits auf nicht-öffentliche Inhalte zurück und andererseits auf Inhalte, die öffentlich (zumeist im Web) verfügbar sind. Das Semantische Web bietet Möglichkeiten, diese öffentlichen Inhalte nicht nur deskriptiv (was wird argumentiert?) darzustellen, sondern auch Zusammenhänge(z.B. Netzwerke, Kontextualisierungen, Referenzierungen, Gewichtungen) aufzuzeigen. Das vorgestellte Framework kann Grundlage für die öffentlichen Inhalte von Stakeholdermaps sein.
Resumo:
This chapter explores cultural protectionism 2.0, i.e. the normative dimensions of cultural diversity policies in the global digital space, asking what adjustments are needed and in fact, how feasible the entire project of diversity regulation in this environment may be. The complexities of the shift from offline to online and from analogue to digital, and the inherent policy challenges are illustrated with some (positive and negative) instances of existing media initiatives. Taking into account the specificities of cyberspace and in a forward-looking manner, the chapter suggests some adjustments to current media policy practices in order to better serve the goal of sustainably diverse cultural environment.
Resumo:
PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
Resumo:
This paper presents a software prototype of a personal digital assistant 2.0. Based on soft computing methods and cognitive computing this mobile application prototype improves calendar and mobility management in cognitive cities. Applying fuzzy cognitive maps and evolutionary algorithms, the prototype represents a next step towards the realization of cognitive cities (i.e., smart cities enhanced with cognition). A user scenario and a test version of the prototype are included for didactical reasons.
Resumo:
Robert Sanborn and Angelo Giardino's introduction for Volume 4, Issue 1: New Morbdities 2.0