907 resultados para Water treatment plants - Design and construction
Resumo:
The design and construction community has shown increasing interest in adopting building information models (BIMs). The richness of information provided by BIMs has the potential to streamline the design and construction processes by enabling enhanced communication, coordination, automation and analysis. However, there are many challenges in extracting construction-specific information out of BIMs. In most cases, construction practitioners have to manually identify the required information, which is inefficient and prone to error, particularly for complex, large-scale projects. This paper describes the process and methods we have formalized to partially automate the extraction and querying of construction-specific information from a BIM. We describe methods for analyzing a BIM to query for spatial information that is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our approach integrates ifcXML data and other spatial data to develop a richer model for construction users. We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The validation results demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
Over the past five years, Australia has accepted approximately 50 000 individuals through its Humanitarian program. To integrate these individuals specialised medical and psychological services have been established in major centres of Australia. Australia has been involved in a heated and partisan debate as to the policy of the government in responding to the refugee situation. Regardless of the outcome of the debate, it is imperative that Australia establishes and develops effective policies and processes to respond to the mental health needs of refugees and asylum seekers. To this end, the current review provides an overview of published studies relating to the psychological treatment of refugees and asylum seekers, as well as studies covering the delivery of related services in response to the needs of this group. In this review we aim to provide an informed perspective in terms of research evidence where this is available. Reported research is supported by findings from local focus groups conducted in Queensland, Australia. The overall aim is to provide an optimum response to facilitate the development of effective and humane programs for a significantly disadvantaged group in our community.
Resumo:
The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 μm c.f. 122 μm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free bleaching (QPP), although none achieved a satisfactory brightness level and more optimisation is needed.
Resumo:
Organisations are engaging in e-learning as a mechanism for delivering flexible learning to meet the needs of individuals and organisations. In light of the increasing use and organisational investment in e-learning, the need for methods to evaluate the success of its design and implementation seems more important than ever. To date, developing a standard for the evaluation of e-learning appears to have eluded both academics and practitioners. The currently accepted evaluation methods for e-learning are traditional learning and development models, such as Kirkpatrick’s model (1976). Due to the technical nature of e-learning it is important to broaden the scope and consider other evaluation models or techniques, such as the DeLone and McLean Information Success Model, that may be applicable to the e-learning domain. Research into the use of e-learning courses has largely avoided considering the applicability of information systems research. Given this observation, it is reasonable to conclude that e-learning implementation decisions and practice could be overlooking useful or additional viewpoints. This research investigated how existing evaluation models apply in the context of organisational e-learning, and resulted in an Organisational E-learning success Framework, which identifies the critical elements for success in an e-learning environment. In particular this thesis highlights the critical importance of three e-learning system creation elements; system quality, information quality, and support quality. These elements were explored in depth and the nature of each element is described in detail. In addition, two further elements were identified as factors integral to the success of an e-learning system; learner preferences and change management. Overall, this research has demonstrated the need for a holistic approach to e-learning evaluation. Furthermore, it has shown that the application of both traditional training evaluation approaches and the D&M IS Success Model are appropriate to the organisational e-learning context, and when combined can provide this holistic approach. Practically, this thesis has reported the need for organisations to consider evaluation at all stages of e-learning from design through to implementation.
Resumo:
Deterministic computer simulations of physical experiments are now common techniques in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena of this nature. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This thesis investigates some practical issues in the design and analysis of computer experiments and attempts to answer some of the questions faced by experimenters using computer experiments. In particular, the question of the number of computer experiments and how they should be augmented is studied and attention is given to when the response is a function over time.
Resumo:
Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.
Resumo:
The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.
Resumo:
Cell trajectory data is often reported in the experimental cell biology literature to distinguish between different types of cell migration. Unfortunately, there is no accepted protocol for designing or interpreting such experiments and this makes it difficult to quantitatively compare different published data sets and to understand how changes in experimental design influence our ability to interpret different experiments. Here, we use an individual based mathematical model to simulate the key features of a cell trajectory experiment. This shows that our ability to correctly interpret trajectory data is extremely sensitive to the geometry and timing of the experiment, the degree of motility bias and the number of experimental replicates. We show that cell trajectory experiments produce data that is most reliable when the experiment is performed in a quasi 1D geometry with a large number of identically{prepared experiments conducted over a relatively short time interval rather than few trajectories recorded over particularly long time intervals.
Resumo:
High power piezoelectric ultrasonic transducers have been widely exploited in a variety of applications. The critical behaviour of a piezoelectric device is encapsulated in its resonant frequencies because of its maximum transmission performance at these frequencies. Therefore power electronic converters should be tuned at those resonant frequencies to transfer electrical power to mechanical power efficiently. However, structural and environmental changes cause variations in the device resonant frequencies which can degrade the system performance. Hence, estimating the device resonant frequencies within the incorporated setup can significantly improve the system performance. This paper proposes an efficient resonant frequency estimation approach to maintain the performance of high power ultrasonic applications using the employed power converter. Experimental validations indicate the effectiveness of the proposed method.
Resumo:
Grid connected photovoltaic (PV) inverters fall into three broad categories - central, string and module integrated converters (MICs). MICs offer many advantages in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author - cascaded dc-dc MICs and bypass dc-dc MICs - integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150 W 5 A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows zero voltage switching (ZVS) keeps losses under 1 W for bi-directional power flows up to 15 W between two adjacent 12 V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.
Resumo:
This paper describes a generic and integrated solar powered remote Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the UASs as well as a data management platform to store, analyse and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, opening the way to a ubiquitous low cost environmental monitoring. A video of the bench and flight test performed can be seen in the following link https://www.youtube.com/watch?v=Bwas7stYIxQ.