966 resultados para Vortex Dislocation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been previously reported that the addition of boron to Ti-6Al-4V results in significant refinement of the as-cast microstructure and enhancement in the strain hardening. However, the mechanism for the latter effect has not been adequately studied. The aim of this study was to understand the reasons for the enhancement in room temperature strain hardening on addition of boron to as cast Ti-6Al-4V alloy. A study was conducted on slip transmission using SEM, TEM, optical profilometry and four point probe resistivity measurements on un-deformed and deformed samples of Ti-6Al-4V-xB with five levels of boron. Optical profilometry was used to quantify the magnitude of offsets on slip traces which in turn provided information about the extent of planar or multiple slip. Studies on deformed samples reveal that while lath boundaries appear to easily permit dislocation slip transmission, colony boundaries are potent barriers to slip. From TEM studies it was also observed that while alloys containing lower boron underwent planar slip, deformation was more homogeneous in higher boron alloys due to multiple slip resulting from large number of colony boundaries. Multiple slip is also proposed to be the prime cause of the enhanced strain hardening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current work reports quantitative OH species concentration in the cavity of a trapped vortex combustor (TVC) in the context of mixing and flame stabilization studies using both syngas and methane fuels. Planar laser induced fluorescence (PLIF) measurements of OH radical obtained using a Nd: YAG pumped dye laser are quantified using a flat flame McKenna burner. The momentum flux ratio (MFR), defined as the ratio of the cavity fuel jet momentum to that of the guide vane air stream, is observed to be a key governing parameter. At high MFRs similar to 4.5, the flame front is observed to form at the interface of the fuel jet and the air jet stream. This is substantiated by velocity vector field measurements. For syngas, as the MFR is lowered to similar to 0.3, the fuel-air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. This trend is observed for different velocities at similar equivalence ratios. In case of methane combustion in the cavity, where the MFRs employed are extremely low at similar to 0.01, a different mechanism is observed. A fuel-rich mixture is now observed at the center of the cavity and this mixture undergoes combustion. On further increase of the cavity equivalence ratio, the rich mixture exceeds the flammability limit and forms a thin reaction zone at the interface with air stream. As a consequence, a shear layer flame at the top of the cavity interface with the mainstream is also observed. The equivalence ratio in the cavity also determines the combustion characteristics in the case of fuel-air mixtures that are formed as a result of the mixing. Overall, flame stabilization mechanisms have been proposed, which account for the wide range of MFRs and premixing in the mainstream as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 x 10(9)/cm(2) and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600-1900 cm(2)/V s at a carrier concentration of 0.7-0.9 x 10(13)/cm(2). Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the long history, so far there is no general theoretical framework for calculating the acoustic emission spectrum accompanying any plastic deformation. We set up a discrete wave equation with plastic strain rate as a source term and include the Rayleigh-dissipation function to represent dissipation accompanying acoustic emission. We devise a method of bridging the widely separated time scales of plastic deformation and elastic degrees of freedom. While this equation is applicable to any type of plastic deformation, it should be supplemented by evolution equations for the dislocation microstructure for calculating the plastic strain rate. The efficacy of the framework is illustrated by considering three distinct cases of plastic deformation. The first one is the acoustic emission during a typical continuous yield exhibiting a smooth stress-strain curve. We first construct an appropriate set of evolution equations for two types of dislocation densities and then show that the shape of the model stress-strain curve and accompanying acoustic emission spectrum match very well with experimental results. The second and the third are the more complex cases of the Portevin-Le Chatelier bands and the Luders band. These two cases are dealt with in the context of the Ananthakrishna model since the model predicts the three types of the Portevin-Le Chatelier bands and also Luders-like bands. Our results show that for the type-C bands where the serration amplitude is large, the acoustic emission spectrum consists of well-separated bursts of acoustic emission. At higher strain rates of hopping type-B bands, the burst-type acoustic emission spectrum tends to overlap, forming a nearly continuous background with some sharp acoustic emission bursts. The latter can be identified with the nucleation of new bands. The acoustic emission spectrum associated with the continuously propagating type-A band is continuous. These predictions are consistent with experimental results. More importantly, our study shows that the low-amplitude continuous acoustic emission spectrum seen in both the type-B and type-A band regimes is directly correlated to small-amplitude serrations induced by propagating bands. The acoustic emission spectrum of the Luders-like band matches with recent experiments as well. In all of these cases, acoustic emission signals are burstlike, reflecting the intermittent character of dislocation-mediated plastic flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed numerical experiments on a one-dimensional elastic solid oscillating in a two-dimensional viscous incompressible fluid with the intent of discerning the interplay of vorticity and elastodynamics in flapping wing propulsion. Perhaps for the first time, we have established the role of foil deflection topology and its influence on vorticity generation, through spatially and temporally evolving foil slope and curvature. Though the frequency of oscillation of the foil has a definite role, it is the phase relation between foil slope and pressure that determines thrust or drag. Similarly, the phase difference between flapping velocity, and pressure and inertial forces, determine the power input to the foil, and in turn drives propulsive efficiency. At low frequencies of oscillation, the sympathetic slope and curvature of deformation of the foil allow generation of leading-edge vortices that do not separate; they cause substantial rise in pressure between the leading edge and mid-chord. The circulatory component of pressure is determined primarily by the leading-edge vortex and therefore thrust too is predominantly circulatory in origin at low frequencies. In the intermediate and high-frequency range, thrust and drag on the foil spatially alternate and non-circulatory forces dominate over circulatory and viscous forces. For the mass ratios we simulated, thrust due to flapping varies quadratically as a function of Strouhal number or trailing-edge flapping velocity; further, the trailing edge flapping velocities peak at the same set of frequencies where the thrust is also a maximum. Propulsive efficiency, on the other hand, is roughly a mirror image of the thrust variation with respect to Strouhal number. Given that most instances of flapping propulsion in nature are primarily through distributed muscular actuation that enables precise control of deformation shape, leading to high thrust and efficiency, the results presented here are pointers towards understanding some of the mechanisms that drive thrust and propulsive efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instabilities arising in unsteady boundary layers with reverse flow have been investigated experimentally. Experiments are conducted in a piston driven unsteady water tunnel with a shallow angle diffuser placed in the test section. The ratio of temporal (Pi(t)) to spatial (Pi(x)) component of the pressure gradient can be varied by a controlled motion of the piston. In all the experiments, the piston velocity variation with time is trapezoidal consisting of three phases: constant acceleration from rest, constant velocity and constant deceleration to rest. The adverse pressure gradient (and reverse flow) are due to a combination of spatial deceleration of the free stream in the diffuser and temporal deceleration of the free stream caused by the piston deceleration. The instability is usually initiated with the formation of one or more vortices. The onset of reverse flow in the boundary layer, location and time of formation of the first vortex and the subsequent flow evolution are studied for various values of the ratio Pi(x) (Pi(x) + Pi(t)) for the bottom and the top walls. Instability is due to the inflectional velocity profiles of the unsteady boundary layer. The instability is localized and spreads to the other regions at later times. At higher Reynolds numbers growth rate of instability is higher and localized transition to turbulence is observed. Scalings have been proposed for initial vortex formation time and wavelength of the instability vortices. Initial vortex formation time scales with convective time, delta/Delta U, where S is the boundary layer thickness and Delta U is the difference of maximum and minimum velocities in the boundary layer. Non-dimensional vortex formation time based on convective time scale for the bottom and the top walls are found to be 23 and 30 respectively. Wavelength of instability vortices scales with the time averaged boundary layer thickness. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a recently proposed Ginzburg-Landau-like lattice free energy functional due to Banerjee et al. (2011) we calculate the fluctuation diamagnetism of high -T-c superconductors as a function of doping, magnetic field and temperature. We analyse the pairing fluctuations above the superconducting transition temperature in the cuprates, ranging from the strong phase fluctuation dominated underdoped limit to the more conventional amplitude fluctuation dominated overdoped regime. We show that a model where the pairing scale increases and the superfluid density decreases with underdoping produces features of the observed magnetization in the pseudogap region, in good qualitative and reasonable quantitative agreement with the experimental data. In particular, we explicitly show that even when the pseudogap has a pairing origin the magnetization actually tracks the superconducting dome instead of the pseudogap temperature, as seen in experiment. We discuss the doping dependence of the `onset' temperature for fluctuation diamagnetism and comment on the role of vortex core -energy jn our model. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present experimental work reports the first observations of primary and secondary transitions in the time-averaged flame topology in a non-premixed swirling flame as the geometric swirl number S-G (a non dimensional number used to quantify the intensity of imparted swirl) is varied from a magnitude of zero till flame blowout. First observations of two transition types viz. primary and secondary transitions are reported. The primary transition represents a transformation from yellow straight jet flame (at S-G = 0) to lifted flame with blue base and finally to swirling seated (burner attached) yellow flame. Time-averaged streamline plot obtained from 2D PIV in mid-longitudinal plane shows a recirculation zone (RZ) at the immediate vicinity of burner exit. The lifted flame is stabilized along the vortex core of this RZ. Further, when S-G similar to 1.4-3, the first occurrence of vortex breakdown (VB) induced internal recirculation zone (IRZ) is witnessed. The flame now stabilizes at the upstream stagnation point of the VB-IRZ, which is attached to the burner lip. The secondary transition represents a transformation from a swirling seated flame to swirling flame with a conical tailpiece and finally to a highly-swirled near blowout oxidizer-rich flame. This transition is understood to be the result of transition in vortex breakdown modes of the swirling flow field from dual-ring VB bubble to central toroidal recirculation zone (CTRZ). The physics of transition is described on the basis of modified Rossby number (Ro(m)). Finally, when the swirl intensity is very high i.e. SG similar to 10, the flame blows out due to excessive straining and due to entrainment of large amount of oxidizer due to partial premixing. The present investigation involving changes in flame topology is immensely important because any change in global flame structure causes oscillatory heat release that can couple with dynamic pressure and velocity fluctuations leading to unsteady combustion. In this light, understanding mechanisms of flame stabilization is essential to tackle the problem of thermo-acoustic instability. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present a numerical study of flow of shear thinning viscoelastic fluids in rectangular lid driven cavities for a wide range of aspect ratios (depth to width ratio) varying from 1/16 to 4. In particular, the effect of elasticity, inertia, model parameters and polymer concentration on flow features in rectangular driven cavity has been studied for two shear thinning viscoelastic fluids, namely, Giesekus and linear PTT. We perform numerical simulations using the symmetric square root representation of the conformation tensor to stabilize the numerical scheme against the high Weissenberg number problem. The variation in flow structures associated with merging and splitting of elongated vortices in shallow cavities and coalescence of corner eddies to yield a second primary vortex in deep cavities with respect to the variation in flow parameters is discussed. We discuss the effect of the dominant eigenvalues and the corresponding eigenvectors on the location of the primary eddy in the cavity. We also demonstrate, by performing numerical simulations for shallow and deep cavities, that where the Deborah number (based on convective time scale) characterizes the elastic behaviour of the fluid in deep cavities, Weissenberg number (based on shear rate) should be used for shallow cavities. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micromechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four types of the fundamental complex potential in antiplane elasticity are introduced: (a) a point dislocation, (b) a concentrated force, (c) a dislocation doublet and (d) a concentrated force doublet. It is proven that if the axis of the concentrated force doublet is perpendicular to the direction of the dislocation doublet, the relevant complex potentials are equivalent. Using the obtained complex potentials, a singular integral equation for the curve crack problem is introduced. Some particular features of the obtained singular integral equation are discussed, and numerical solutions and examples are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular dynamics method is used to simulate microcrack healing during heating or/and under compressive stress. A centre microcrack in Cu crystal would be sealed under compressive stress or by heating. The role of compressive stress and heating in crack healing was additive. During microcrack healing, dislocation generation and motion occurred. When there were pre-existing dislocations around the microcrack, the critical temperature or compressive stress necessary for microcrack healing would decrease, and, the higher the number of dislocations, the lower the critical temperature or compressive stress. The critical temperature necessary for microcrack healing depended upon the orientation of the crack plane. For example, the critical temperature for the crack along the (001) plane was the lowest, i.e. 770K.