801 resultados para Voltage sensor domains
Resumo:
The results from applying a sensor fusion process to an adaptive controller used to balance all inverted pendulum axe presented. The goal of the sensor fusion process was to replace some of the four mechanical measurements, which are known to be sufficient inputs for a linear state feedback controller to balance the system, with optic flow variables. Results from research into the psychology of the sense of balance in humans were the motivation for the investigation of this new type of controller input. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described. The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training till-le for the adaptive controller and reduced performance (measured as the time the pendulum remains upright)
Resumo:
Wireless sensor networks (WSNs) have been widely used in pervasive systems such as intelligent buildings. As a vital factor of product cost, energy consuming in WSN has been focused upon, but only via energy harvesting can the problem be overcome radically. This article presents a new approach to harvesting electromagnetic energy for WSN from useless radio frequency (RF) signals transmitted in WSN, with a quantitative analysis showing its feasibility.
Resumo:
As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article presents a new approach to making use of electromagnetic energy from useless radio frequency (RF) signals transmitted in WSNs, with a quantitative analysis showing its feasibility. A mechanism to harvest the energy either passively or actively is proposed.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA.
Resumo:
It is problematic to use standard ontology tools when describing vague domains. Standard ontologies are designed to formally define one view of a domain, and although it is possible to define disagreeing statements, it is not advisable, as the resulting inferences could be incorrect. Two different solutions to the above problem in two different vague domains have been developed and are presented. The first domain is the knowledge base of conversational agents (chatbots). An ontological scripting language has been designed to access ontology data from within chatbot code. The solution developed is based on reifications of user statements. It enables a new layer of logics based on the different views of the users, enabling the body of knowledge to grow automatically. The second domain is competencies and competency frameworks. An ontological framework has been developed to model different competencies using the emergent standards. It enables comparison of competencies using a mix of linguistic logics and descriptive logics. The comparison results are non-binary, therefore not simple yes and no answers, highlighting the vague nature of the comparisons. The solution has been developed with small ontologies which can be added to and modified in order for the competency user to build a total picture that fits the user’s purpose. Finally these two approaches are viewed in the light of how they could aid future work in vague domains, further work in both domains is described and also in other domains such as the semantic web. This demonstrates two different approaches to achieve inferences using standard ontology tools in vague domains.
Resumo:
Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.
Resumo:
We study weak solutions for a class of free-boundary problems which includes as a special case the classical problem of travelling gravity waves on water of finite depth. We show that such problems are equivalent to problems in fixed domains and study the regularity of their solutions. We also prove that in very general situations the free boundary is necessarily the graph of a function.
Resumo:
The design of high-voltage equipment encompasses the study of oscillatory surges caused by transients such as those produced by switching. By obtaining a model, the response of which reconstructs that observed in the actual system, simulation studies and critical tests can be carried out on the model rather than on the equipment itself. In this paper, methods for the construction of simplified models are described and it is shown how the use of a complex model does not necessarily result in superior response pattern reconstruction.
Resumo:
To ensure minimum loss of system security and revenue it is essential that faults on underground cable systems be located and repaired rapidly. Currently in the UK, the impulse current method is used to prelocate faults, prior to using acoustic methods to pinpoint the fault location. The impulse current method is heavily dependent on the engineer's knowledge and experience in recognising/interpreting the transient waveforms produced by the fault. The development of a prototype real-time expert system aid for the prelocation of cable faults is described. Results from the prototype demonstrate the feasibility and benefits of the expert system as an aid for the diagnosis and location of faults on underground cable systems.
Resumo:
A new approach is presented for the solution of spectral problems on infinite domains with regular ends, which avoids the need to solve boundary-value problems for many trial values of the spectral parameter. We present numerical results both for eigenvalues and for resonances, comparing with results reported by Aslanyan, Parnovski and Vassiliev.
Resumo:
A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.