711 resultados para Volatil fatty acid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deep-fat frying is susceptible to induce the formation of undesirable products as lipid oxidation products and acrylamide in fried foods. Plantain chips produced by small-scale producers are sold to consumers without any control. The objective of this study was to evaluate the quality of plantain chips from local producers in relation to production process parameters and oils, and to identify the limiting factors for the production of acrylamide in plantain chips. Samples of frying oils and plantain chips prepared with either palm olein or soybean oil were collected from 10 producers in Yaoundé. Quality parameters determined in this study were: fatty acid composition of the oils, determined by gas chromatography (GC) of free acid methyl ester; trans fatty acids, determined by Fourier transform infra-red spectroscopy; Tocopherols and tocotrienols as markers of nutritional quality were analyzed by High Performance Liquid Chromatography in isocratic mode. Free fatty acids and acylglycerols as markers of lipid hydrolysis were analyzed by GC of trimethylsilyl derivatives of glycerides. Conjugated dienes, Anisidine value and viscosity as markers of lipid oxidation and thermal decomposition of the oils; acrylamide which is formed through Maillard reaction and identified as a toxic compound in various fried products. Asparagine content of the raw fresh plantain powder was also determined. Fatty acid composition of palm oleins was stable within a day of intermittent frying. In soybean oils, about 57% and 62.5% of linoleic and linolenic acids were lost but trans fatty acids were not detected. Soybean oils were partly hydrolysed leading to the formation of free fatty acids, monoacylglycerols and diacylglycerols. In both oils, tocopherols and tocotrienols contents decreased significantly by about 50%. Anisidine value (AV) and polymers contents increased slightly in fried palm oleins while conjugated hydroperoxides, AV and polymers greatly increased in soybean oils. Acrylamide was not detected in the chips. This is explained by the absence of asparagine in the raw plantains, the other acrylamide precursors being present. This study shows that the plantain chips prepared at the small-scale level in Yaounde with palm olein are of good quality regarding oxidation and hydrolysis parameters and the absence of acrylamide. In contrast, oxidation developed with soybean oil whose usage for frying should be questioned. Considering that asparagine is the limiting factor for the formation of acrylamide in plantain chips, its content depending on several factors such as production parameters and maturity stage should be explored.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências Veterinárias, especialidade de Produção Animal

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freshwater fish are an important source of protein, but they also contain other highly nutritive components such as fats. Polyunsaturated fatty acids (PUFAs) are essential for normal growth, development and reproduction of vertebrates. The antioxidant role of vitamin E in cell membranes prevents fatty acid and cholesterol oxidation, thereby promoting PUFA and subcellular particle stabilization. The effects of vitamin E supplementation on the quality of Nile tilapia (Oreochromis niloticus) carcass were investigated. The experiments were carried out in an experimental laboratory over 106 d. After sex reversal, 400 early juvenile O. niloticus were tested in a completely randomized experiment with 5 treatments (4 repetitions each), consisting of vitamin E monophosphate supplementation at 0, 50, 100, 150 or 200 mg/kg of a base diet. Treatment diets contained equal amounts of protein and energy. Tilapias supplemented with vitamin E contained arachidonic acid (20:4 omega-6; AA) which participates in inflammatory response. Nile tilapia carcasses that received vitamin E at 100 and 150 mg/kg diet had improved carcass quality by increasing the PUFA:SFA ratio and had the highest levels of polyunsaturated fatty acids from the omega-3 (linolenic acid; 18:3 omega-3) and omega-6 (linoleic acid; 18:2 omega-6) series. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein-energy wasting (PEW) is commonly seen in patients with chronic kidney disease (CKD). The condition is characterised by chronic, systemic low-grade inflammation which affects nutritional status by a variety of mechanisms including reducing appetite and food intake and increasing muscle catabolism. PEW is linked with co-morbidities such as cardiovascular disease, and is associated with lower quality of life, increased hospitalisations and a 6-fold increase in risk of death1. Significant gender differences have been found in the severity and effects of several markers of PEW. There have been limited studies testing the ability of anti-inflammatory agents or nutritional interventions to reduce the effects of PEW in dialysis patients. This thesis makes a significant contribution to the understanding of PEW in dialysis patients. It advances understanding of measurement techniques for two of the key components, appetite and inflammation, and explores the effect of fish oil, an anti-inflammatory agent, on markers of PEW in dialysis patients. The first part of the thesis consists of two methodological studies conducted using baseline data. The first study aims to validate retrospective ratings of hunger, desire to eat and fullness on visual analog scales (VAS) (paper and pen and electronic) as a new method of measuring appetite in dialysis patients. The second methodological study aims to assess the ability of a variety of methods available in routine practice to detect the presence of inflammation. The second part of the thesis aims to explore the effect of 12 weeks supplementation with 2g per day of Eicosapentaenoic Acid (EPA), a longchain fatty acid found in fish oil, on markers of PEW. A combination of biomarkers and psychomarkers of appetite and inflammation are the main outcomes being explored, with nutritional status, dietary intake and quality of life included as secondary outcomes. A lead in phase of 3 months prior to baseline was used so that each person acts as their own historical control. The study also examines whether there are gender differences in response to the treatment. Being an exploratory study, an important part of the work is to test the feasibility of the intervention, thus the level of adherence and factors associated with adherence are also presented. The studies were conducted at the hemodialysis unit of the Wesley Hospital. Participants met the following criteria: adult, stage 5 CKD on hemodialysis for at least 3 months, not expected to receive a transplant or switch to another dialysis modality during the study, absence of intellectual impairment or mental illness impairing ability to follow instructions or complete the intervention. A range of intermediate, clinical and patient-centred outcome measures were collected at baseline and 12 weeks. Inflammation was measured using five biomarkers: c-reactive protein (CRP), interleukin-6 (IL6), intercellular adhesion molecule (sICAM-1), vascular cell adhesion molecule (sVCAM-1) and white cell count (WCC). Subjective appetite was measured using the first question from the Appetite and Dietary Assessment (ADAT) tool and VAS for measurements of hunger, desire to eat and fullness. A novel feature of the study was the assessment of the appetite peptides leptin, ghrelin and peptide YY as biomarkers of appetite. Nutritional status/inflammation was assessed using the Malnutrition-Inflammation Score (MIS) and the Patient-Generated Subjective Global Assessment (PG-SGA). Dietary intake was measured using 3-day records. Quality of life was measured using the Kidney Disease Quality of Life Short Form version 1.3 (KDQOL-SF™ v1.3 © RAND University), which combines the Short-Form 36 (SF36) with a kidney-disease specific module2. A smaller range of these variables was available for analysis during the control phase (CRP, ADAT, dietary intake and nutritional status). Statistical analysis was carried out using SPSS version 14 (SPSS Inc, Chicago IL, USA). Analysis of the first part of the thesis involved descriptive and bivariate statistics, as well as Bland-Altman plots to assess agreement between methods, and sensitivity analysis/ROC curves to test the ability of methods to predict the presence of inflammation. The unadjusted (paired ttests) and adjusted (linear mixed model) change over time is presented for the main outcome variables of inflammation and appetite. Results are shown for the whole group followed by analyses according to gender and adherence to treatment. Due to the exploratory nature of the study, trends and clinical significance were considered as important as statistical significance. Twenty-eight patients (mean age 61±17y, 50% male, dialysis vintage 19.5 (4- 101) months) underwent baseline assessment. Seven out of 28 patients (25%) reported sub-optimal appetite (self-reported as fair, poor or very poor) despite all being well nourished (100% SGA A). Using the VAS, ratings of hunger, but not desire to eat or fullness, were significantly (p<0.05) associated with a range of relevant clinical variables including age (r=-0.376), comorbidities (r=-0.380) nutritional status (PG-SGA score, r=-0.451), inflammatory markers (CRP r=-0.383; sICAM-1 r=-0.387) and seven domains of quality of life. Patients expressed a preference for the paper and pen method of administering VAS. None of the tools (appetite, MIS, PG-SGA, albumin or iron) showed an acceptable ability to detect patients who are inflamed. It is recommended that CRP should be tested more frequently as a matter of course rather than seeking alternative methods of measuring inflammation. 27 patients completed the 12 week intervention. 20 patients were considered adherent based on changes in % plasma EPA, which rose from 1.3 (0.94)% to 5.2 (1.1)%, p<0.001, in this group. The major barriers to adherence were forgetting to take the tablets as well as their size. At 12 weeks, inflammatory markers remained steady apart from the white cell count which decreased (7.6(2.5) vs 7.0(2.2) x109/L, p=0.058) and sVCAM-1 which increased (1685(654) vs 2249(925) ng/mL, p=0.001). Subjective appetite using VAS increased (51mm to 57mm, +12%) and there was a trend towards reduction in peptide YY (660(31) vs 600(30) pg/mL, p=0.078). There were some gender differences apparent, with the following adjusted change between baseline and week 12: CRP (males -3% vs females +17%, p=0.19), IL6 (males +17% vs females +48%, p=0.77), sICAM-1 (males -5% vs females +11%, p=0.07), sVCAM-1 (males +54% vs females +19%, p=0.08) and hunger ratings (males 20% vs females -5%, p=0.18). On balance, males experienced a maintainence or reduction in three inflammatory markers and an improvement in hunger ratings, and therefore appeared to have responded better to the intervention. Compared to those who didn’t adhere, adherent patients maintained weight (mean(SE) change: +0.5(1.6) vs - 0.8(1.2) kg, p=0.052) and fat-free mass (-0.1 (1.6) vs -1.8 (1.8) kg, p=0.045). There was no difference in change between the intervention and control phase for CRP, appetite, nutritional status or dietary intake. The thesis makes a significant contribution to the evidence base for understanding of PEW in dialysis patients. It has advanced knowledge of methods of assessing inflammation and appetite. Retrospective ratings of hunger on a VAS appear to be a valid method of assessing appetite although samples which include patients with very poor appetite are required to confirm this. Supplementation with fish oil appeared to improve subjective appetite and dampen the inflammatory response. The effectiveness of the intervention is influenced by gender and adherence. Males appear to be more responsive to the primary outcome variables than females, and the quality of response is improved with better adherence. These results provide evidence to support future interventions aimed at reducing the effects of PEW in dialysis patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Haemodialysis patients show signs of chronic inflammation and reduced appetite, which is associated with a worse clinical status and an increased mortality risk. Fish oil has anti-inflammatory properties and may be useful as a therapeutic treatment. There is limited evidence to indicate the feasibility and efficacy of this intervention in dialysis patients. The present study aimed to compare the effect of 12 weeks of supplementation with fish oil on markers of appetite and inflammation in male and female haemodialysis patients. Methods: The study was conducted in 28 haemodialysis patients. All patients were prescribed 3 g of fish oil per day for 12 weeks. Changes in appetite, plasma fatty acid profiles and inflammatory markers were measured at baseline and at 12 weeks. Results: The mean (SD) increase in percent plasma eicosapentaenoic acid was statistically significant [1.1 (0.8) to 4.1 (2.2), P < 0.001], which was a strong indicator of good adherence. There were trends towards reductions in peptide YY (−9%; P = 0.078) and an increase in subjective sensations of hunger (+12%; P = 0.406), which reflects an increase in motivation to eat. Males (n = 13) experienced a more marked increase in hunger compared to females (+23% versus −6%), which was associated with maintenance in C-reactive protein and interleukin-6, and a reduction in soluble intercellular adhesion molecule-1. Conclusions: The results obtained demonstrate meaningful trends towards improvements in subjective appetite and certain inflammatory markers (although no change in dietary intake) and this effect was more pronounced in males. However, the levels of some inflammatory markers increased in females and this requires further study. The high level of adherence achieved indicates that an intervention requiring patients to consume four fish oil capsules per day is achievable. This was a short-term study and the effects need to be confirmed in a randomised controlled trial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently it has been shown that the consumption of a diet high in saturated fat is associated with impaired insulin sensitivity and increased incidence of type 2 diabetes. In contrast, diets that are high in monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs), especially very long chain n-3 fatty acids (FAs), are protective against disease. However, the molecular mechanisms by which saturated FAs induce the insulin resistance and hyperglycaemia associated with metabolic syndrome and type 2 diabetes are not clearly defined. It is possible that saturated FAs may act through alternative mechanisms compared to MUFA and PUFA to regulate of hepatic gene expression and metabolism. It is proposed that, like MUFA and PUFA, saturated FAs regulate the transcription of target genes. To test this hypothesis, hepatic gene expression analysis was undertaken in a human hepatoma cell line, Huh-7, after exposure to the saturated FA, palmitate. These experiments showed that palmitate is an effective regulator of gene expression for a wide variety of genes. A total of 162 genes were differentially expressed in response to palmitate. These changes not only affected the expression of genes related to nutrient transport and metabolism, they also extend to other cellular functions including, cytoskeletal architecture, cell growth, protein synthesis and oxidative stress response. In addition, this thesis has shown that palmitate exposure altered the expression patterns of several genes that have previously been identified in the literature as markers of risk of disease development, including CVD, hypertension, obesity and type 2 diabetes. The altered gene expression patterns associated with an increased risk of disease include apolipoprotein-B100 (apo-B100), apo-CIII, plasminogen activator inhibitor 1, insulin-like growth factor-I and insulin-like growth factor binding protein 3. This thesis reports the first observation that palmitate directly signals in cultured human hepatocytes to regulate expression of genes involved in energy metabolism as well as other important genes. Prolonged exposure to long-chain saturated FAs reduces glucose phosphorylation and glycogen synthesis in the liver. Decreased glucose metabolism leads to elevated rates of lipolysis, resulting in increased release of free FAs. Free FAs have a negative effect on insulin action on the liver, which in turn results in increased gluconeogenesis and systemic dyslipidaemia. It has been postulated that disruption of glucose transport and insulin secretion by prolonged excessive FA availability might be a non-genetic factor that has contributed to the staggering rise in prevalence of type 2 diabetes. As glucokinase (GK) is a key regulatory enzyme of hepatic glucose metabolism, changes in its activity may alter flux through the glycolytic and de novo lipogenic pathways and result in hyperglycaemia and ultimately insulin resistance. This thesis investigated the effects of saturated FA on the promoter activity of the glycolytic enzyme, GK, and various transcription factors that may influence the regulation of GK gene expression. These experiments have shown that the saturated FA, palmitate, is capable of decreasing GK promoter activity. In addition, quantitative real-time PCR has shown that palmitate incubation may also regulate GK gene expression through a known FA sensitive transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), which upregulates GK transcription. To parallel the investigations into the mechanisms of FA molecular signalling, further studies of the effect of FAs on metabolic pathway flux were performed. Although certain FAs reduce SREBP-1c transcription in vitro, it is unclear whether this will result in decreased GK activity in vivo where positive effectors of SREBP-1c such as insulin are also present. Under these conditions, it is uncertain if the inhibitory effects of FAs would be overcome by insulin. The effects of a combination of FAs, insulin and glucose on glucose phosphorylation and metabolism in cultured primary rat hepatocytes at concentrations that mimic those in the portal circulation after a meal was examined. It was found that total GK activity was unaffected by an increased concentration of insulin, but palmitate and eicosapentaenoic acid significantly lowered total GK activity in the presence of insulin. Despite the fact that total GK enzyme activity was reduced in response to FA incubation, GK enzyme translocation from the inactive, nuclear bound, to active, cytoplasmic state was unaffected. Interestingly, none of the FAs tested inhibited glucose phosphorylation or the rate of glycolysis when insulin is present. These results suggest that in the presence of insulin the levels of the active, unbound cytoplasmic GK are sufficient to buffer a slight decrease in GK enzyme activity and decreased promoter activity caused by FA exposure. Although a high fat diet has been associated with impaired hepatic glucose metabolism, there is no evidence from this thesis that FAs themselves directly modulate flux through the glycolytic pathway in isolated primary hepatocytes when insulin is also present. Therefore, although FA affected expression of a wide range of genes, including GK, this did not affect glycolytic flux in the presence of insulin. However, it may be possible that a saturated FA-induced decrease in GK enzyme activity when combined with the onset of insulin resistance may promote the dys-regulation of glucose homeostasis and the subsequent development of hyperglycaemia, metabolic syndrome and type 2 diabetes.