986 resultados para Virus da doença de Newcastle
Resumo:
A large number of polymorphic simple sequence repeats (SSRs) or microsatellites are needed to develop a genetic map for shrimp. However, developing an SSR map is very time-consuming, expensive, and most SSRs are not specifically linked to gene loci of immediate interest. We report here on our strategy to develop polymorphic markers using expressed sequence tags (ESTs) by designing primers flanking single or multiple SSRs with three or more repeats. A subtracted cDNA library was prepared using RNA from specific pathogen-free (SPF) Litopenaeus vannamei juveniles (similar to 1 g) collected before (0) and after (48 h) inoculation with the China isolate of white spot syndrome virus (WSSV). A total of 224 clones were sequenced, 194 of which were useful for homology comparisons against annotated genes in NCBI nonredundant (nr) and protein databases, providing 179 sequences encoded by nuclear DNA, 4 mitochondrial DNA, and 11 were similar to portions of WSSV genome. The nuclear sequences clustered in 43 groups, 11 of which were homologous to various ESTs of unknown function, 4 had no homology to any sequence, and 28 showed similarities to known genes of invertebrates and vertebrates, representatives of cellular metabolic processes such as calcium ion balance, cytoskeleton mRNAs, and protein synthesis. A few sequences were homologous to immune system-related (allergens) genes and two were similar to motifs of the sex-lethal gene of Drosophila. A large number of EST sequences were similar to domains of the EF-hand superfamily (Ca2+ binding motif and FRQ protein domain of myosin light chains). Single or multiple SSRs with three or more repeats were found in approximately 61 % of the 179 nuclear sequences. Primer sets were designed from 28 sequences representing 19 known or putative genes and tested for polymorphism (EST-SSR marker) in a small test panel containing 16 individuals. Ten (53%) of the 19 putative or unknown function genes were polymorphic, 4 monomorphic, and 3 either failed to satisfactorily amplify genomic DNA or the allele amplification conditions need to be further optimized. Five polymorphic ESTs were genotyped with the entire reference mapping family, two of them (actin, accession #CX535973 and shrimp allergen arginine kinase, accession #CX535999) did not amplify with all offspring of the IRMF panel suggesting presence of null alleles, and three of them amplified in most of the IRM F offspring and were used for linkage analysis. EF-hand motif of myosin light chain (accession #CX535935) was placed in ShrimpMap's linkage group 7, whereas ribosomal protein S5 (accession #CX535957) and troponin I (accession #CX535976) remained unassigned. Results indicate that (a) a large number of ESTs isolated from this cDNA library are similar to cytoskeleton mRNAs and may reflect a normal pathway of the cellular response after im infection with WSSV, and (b) primers flanking single or multiple SSRs with three or more repeats from shrimp ESTs could be an efficient approach to develop polymorphic markers useful for linkage mapping. Work is underway to map additional SSR-containing ESTs from this and other cDNA libraries as a plausible strategy to increase marker density in ShrimpMap.
Resumo:
To study response to white spot syndrome virus (WSSV) under ammonia stress, Penaeus japonicus were exposed to 5 mg l(-1) ammonia-N and challenged orally with WSSV (NW). Controls consisted of an ammonia-N-exposed control group (N), a WSSV-challenged positive control group (W), and an untreated control group (control). Immune parameters measured were total haemocyte count (THC), haemocyte phagocytosis, plasma protein content and haemolymph enzymatic activities for prophenoloxidase (proPO), alkaline phosphatase (ALP), and nitric oxide synthase (NOS). THC and plasma protein had downward trends with time in all treatment groups (NW, N, and W) in contrast to the untreated control group (control). The percentage phagocytosis, NOS activity, and ALP and proPO activity of W and NW decreased initially then increased from 6 to 78 h (except for NOS and ALP, from 6 to 54 h) before declining thereafter until the end of the experiment. Compared with untreated controls (control), there was a downward trend for all measured parameters in the treatment groups (N, NW, and W), but the degree was W > NW > N. WSSV was detected at 78 h postchallenge in both W and NW. In conclusion, 5 mg l(-1) ammonia-N reduced the immunocompetence of P japonicus and may have decreased the virulence of WSSV (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We studied the possible role that marine microalgae may play during the outbreaks of WSS (white spot syndrome). In order to elucidate the possibility of marine microalgae carrying WSSV (white spot syndrome virus), six marine microallgae (Isochr.vsis galbana, Skeletonema costatum, Chlorella sp., Heterosigma akashiwo, Scrippsiella trochoidea, Dunaliella salina) were co-cultured with adult Marsupenaeus japollicus infected with WSSV and were assayed daily by nested-PCR to study whether they could carry WSSV. Further experiments were conducted to investigate whether the virus carried by microalgae could re-infect juvenile M. japonicus. Results showed that all of the experimental microalgae, except H. akashiwo could carry WSSV, and among them, Chlorella sp. and S. trochoidea had the strongest WSSV-carrying ability. Unlike other invertebrate carriers of WSSV, the WSSV detections in microalgae, which were positive after I and 3 days, were negative after 10 days of incubation. WSSV detection results in juvenile M. japonicus showed that the juvenile shrimp were re-infected by co-cultured Chlorella sp., although the juvenile M. japonicus carried so small an amount of WSSV that it could only be detected by nested-PCR. The results of this experiment suggest that microalgae might be one possible horizontal transmission pathway for WSSV. Further research, however, is required to better understand the factors behind the different carrying abilities and virus-carrying mechanisms of different microalgae. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The nitric oxide synthase (NOS) activity in the haemocytes of shrimps Fenneropenaeus chinensis (Osbeck) and Marsupenaeus japonicus (Bate) was Studied after white spot syndrome virus (WSSV) infection to determine its characteristics in response to virus infection. First, the NOS activity in haemocytes of shrimps was determined by the means of NBT reduction and changes in cell conformation. And the variations of NOS activity in shrimps after challenge with WSSV intramuscularly were evaluated through the analysis Of L-citrulline and total nitrite/nitrate (both as NO derivates) concentrations. The result showed that NOS activity in the haemocytes of F chinensis increased slightly from 0 to 12 h postchallenge, indicated by the variations Of L-Citrulline (from 11.15 +/- 0.10 to 12.08 +/- 0.64 mu M) and total nitrite/nitrate concentrations (from 10.45 +/- 0.65 to 12.67 +/- 0.52 mu M). Then it decreased sharply till the end of the experiment (84 h postchallenge), the concentrations Of L-Citrulline and total nitrite/nitrate at 84 It were 1.58 +/- 0.24 and 2.69 +/- 0.70 mu M, respectively. The LPS-stimulated NOS activity kept constant during the experiment. However, in M. japonicus, the NOS activity kept increasing during the first 72 It postchallenge, the concentrations Of L-Citrulline and total nitrite/nitrate increased from 7.82 +/- 0.77 at 0 h to 10.79 +/- 0.50 mu M at 72 h, and from 8.98 +/- 0.43 at 0 h to 11.20 +/- 0.37 mu M at 72 h, respectively. Then it decreased till the end of the experiment (216 h postchallenge), and the concentrations of L-Citrulline and total nitrite/nitrate at 216 h were 5.66 +/- 0.27 and 4.68 +/- 0.16 mu M, respectively. More importantly, an apparent increase of I-PS-stimulated NOS activity was observed in M japonicus at 48 h postchallenge, which was about 4 times higher than that in the control group of health shrimps. In correspondence with the difference of NOS activity between the two species of shrimps, the Cumulative mortalities of the shrimps were also different. All shrimps of F. chinensis in the mortality experiment died in 66 h, much more quickly than M. japonicus, Whose accumulative mortality reached 100% after 240 h. Data here reported let us hypothesize that NOS activity in the haemocytes of shrimps F chinensis and M. japonicus responses to WSSV infection differently, and this might be one of the reasons for the different susceptibility of F chinensis and M. japonicus to WSSV infection. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Highly pathogenic avian influenza H5N1 virus has swept west across the globe and caused serious debates on the roles of migratory birds in virus circulation since the first large-scale outbreak in migratory birds of Lake Qinghai, 2005. In May 2006, another outbreak struck Lake Qinghai and six novel strains were isolated. To elucidate these QH06 viruses, the six isolates were subjected to whole-genome sequencing. Phylogenetic analyses show that QH06 viruses are derived from the lineages of Lake Qinghai, 2005. Five of the six novel isolates are adjacent to the strain A/Cygnus olor/Croatia/1/05, and the last one is related to the strain A/duck/Novosibirsk/ 02/05, an isolate of the flyway. Antigenic analyses suggest that QH06 and QH05 viruses are similar to each other. These findings implicate that QH06 viruses of Lake Qinghai may travel back via migratory birds, though not ruling out the possibility of local circulation of viruses of Lake Qinghai.
Resumo:
2010
Resumo:
2007
Resumo:
2009
Detecção do melon yellowing associated virus (MYaV) em áreas produtoras de melão na Região Nordeste.
Resumo:
2009
Resumo:
O greening, inicialmente chamado de "doenças do ramo amarelo", e posteriomente huanglonbing (HBL), doença do dragão amarelo, é considerada a doença dos citros de maior importância no mundo, em função da dificuldade de controle, da rápida disseminação e por ser altamente destrutiva. O primeiro relato da doença foi feito da China, em 1919, espalhando-se daí para países da África e Oceania. No início do século 21, foi detectada no continente americano, exatamente nos dois países e estados maiores produtores de citros: os Estados Unidos (Flórida) e o Brasil (São Paulo) onde foi relatada em Araraquara em 2004, estando hoje em mais de 100 municípios produtores.
Resumo:
A importância dos ácaros do gênero Brevipalpus vem crescendo, tornando-se evidente seu potencial como praga de plantas, especialmente por sua capacidade de transmitir vírus (CHILDERS et al., 2003; KITAJIMA et al., 2010). Os vírus transmitidos por Brevipalpus sp. (VTBs) têm em comum, além do vetor, a morfologia das partículas e semelhanças em sintomas e efeitos citopatológicos que induzem nas plantas hospedeiras (KITAJIMA et al., 2003). Os sintomas nos hospedeiros consistem de lesões locais (cloróticas, necróticas, manchas verdes ou ainda manchas anelares) em folhas e ramos afetados (KITAJIMA et al., 2003). Ao contrário de outros vírus que invadem sistemicamente seus hospedeiros, as partículas dos VTBs permanecem concentradas nas lesões, não sendo capazes de circular nas plantas que infectam. A relação dos VTBs com seus vetores não é completamente conhecida. A otimização dos protocolos de extração de ácidos nucleicos e a possibilidade de se utilizar primers específicos não apenas para a sua detecção nos hospedeiros, mas também em seus vetores, são passos importantes para os estudos da interação vetor-patógeno-hospedeiro. Podem também ser úteis para o manejo de culturas com relação às doenças causadas pelos VTBs, como a mancha anular do cafeeiro, a leprose dos citros e a pinta verde do maracujazeiro, pois, em alguns casos, é possível a detecção precoce dos vírus nos ácaros antes mesmo do aparecimento dos sintomas no campo.
Resumo:
1993
Resumo:
2009
Resumo:
Doenças causadas por fungos: Antracnose (Colletotrichum truncatum), Cancro da haste (Diaporthe phaseolorum var. meridionalis e D. phaseolorum var. caulivora), Crestamento foliar de cercóspora e mancha púrpura (Cercospora kikuchii), Ferrugem (Phakopsora pachyrhizi e P. meibomiae), Mancha alvo e podridão radicular de corinéspora (Corynespora cassiicola), Mancha foliar de ascoquita (Ascochyta sojae), Mancha foliar de mirotécio (Myrothecium roridum), Mancha olho-de-rã (Cercospora sojina), Mancha parda (Septoria glycines), Mela ou requeima (Rhizoctonia solani AG1), Míldio (Peronospora manshurica), Tombamento e morte em reboleira de rizoctonia (Rhizoctonia solani), Tombamento e murcha de esclerócio (Sclerotium rolfsii), Oídio (Erysiphe diffusa), Podridão branca da haste (Sclerotinia sclerotiorum), Podridão de carvão da raiz (Macrophomina phaseolina), Podridão parda da haste (Cadophora gregata), Podridão radicular de roselínia (Rosellinia necatrix), Seca da haste e da vagem (Phomopsis spp.), Podridão radicular de fitóftora (Phytophthora sojae), Podridão vermelha da raiz (Fusarium spp.). Doenças causadas por bactérias: Crestamento bacteriano (Pseudomonas savastanoi pv. glycinea), Fogo Selvagem (Pseudomonas syringae pv. tabaci), Pústula bacteriana (Xanthomonas axonopodis pv. glycines). Doenças causadas por vírus: Mosaico cálico (Alfalfa Mosaic Virus - AMV), Mosqueado do feijão (Bean Pod Mottle Virus - BPMV), Mosaico comum da soja (Soybean Mosaic Virus - SMV), Necrose da haste (Cowpea Mild Mottle Virus - CPMMV), Queima do broto (Tobacco Streak Virus - TSV). Doenças causadas por nematóides: Nematóide de cisto (Heterodera glycines), Nematóides de galhas (Meloidogyne incognita e M. javanica), Nematóide das lesões (Pratylenchus spp.), Nematóide reniforme (Rotylenchulus reniformis). Estádios de desenvolvimento da soja.
Resumo:
2009