991 resultados para Virus Internalization
Resumo:
Deformed wing virus (DWV) represents an ideal model to study the interaction between mode of transmission and virulence in honey bees since it exhibits both horizontal and vertical transmissions. However, it is not yet clear if venereal-vertical transmission represents a regular mode of transmission for this virus in natural honey bee populations. Here, we provide clear evidence for the occurrence of high DWV titres in the endophallus of sexually mature drones collected from drone congregation areas (DCAs). Furthermore, the endophallus DWV titres of drones collected at their maternal hives were no different from drones collected at nearby DCAs, suggesting that high-titre DWV infection of the endophallus does not hinder the ability of drones to reach the mating area. The results are discussed within the context of the dispersal of DWV between colonies and the definition of DWV virulence with respect to the transmission route and the types of tissues infected.
Resumo:
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Resumo:
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130–230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130–230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 µg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.
Resumo:
In this study the design and development of two real-time PCR assays for the rapid, sensitive and specific detection of infectious laryngotracheitis virus (ILTV) DNA is described. A Primer-Probe Energy Transfer (PriProET) assay and 5' conjugated Minor Groove Binder (MGB) method are compared and contrasted. Both have been designed to target the thymidine kinase gene of the ILTV genome. Both PriProET and MGB assays are capable of detecting 20 copies of a DNA standard per reaction and are linear from 2 x 10(8) to 2 x 10(2) copies/mu l. Neither PriProET, nor MGB reacted with heterologous herpesviruses, indicating a high specificity of the two methods as novel tools for virus detection and identification. This study demonstrates the suitability of PriProET and 5' conjugated MGB probes as real-time PCR chemistries for the diagnosis of respiratory diseases caused by ILTV. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A novel assay for the pan-serotypic detection of foot-and-mouth disease virus (FMDV) was designed using a 5' conjugated minor groove binder (MGB) probe real-time RT-PCR system. This assay targets the 3D region of the FMDV genome and is capable of detecting 20 copies of a transcribed RNA standard. The linear range of the test was eight logs from 2 x 10(1) to 2 x 10(8) copies and amplification time was approximately 2 h. Using a panel of 83 RNA samples from representative FMDV isolates, the diagnostic sensitivity of this test was shown to be equivalent to a TaqMan real-time RT-PCR that targets the 5' untranslated region of FMDV. Furthermore, the assay does not detect viruses causing similar clinical diseases in pigs such as swine vesicular disease virus and vesicular stomatitis virus, nor does it detect marine caliciviruses causing vesicular exanthema. The development of this assay provides a useful tool for the differential diagnosis of FMD, potentially for use in statutory or emergency testing programmes, or for detection of FMDV RNA in research applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The design and development of a 5' conjugated minor groove binder (MGB) probe real-time RT-PCR assay are described for rapid, sensitive and specific detection of swine vesicular disease virus (SVDV) RNA. The assay is designed to target the 2C gene of the SVDV genome and is capable of detecting 2 x 10(2) copies of an RNA standard per reaction. It does not detect any of the other RNA viruses that cause vesicular disease in pigs, or the human enterovirus, Coxsackie B5 virus (CVB5) which is closely related antigenically to SVDV. The linear range of this test was from 2 x 10(2) to 2 x 10(8) copies/mu l. The assay is rapid and can detect SVDV RNA in just over 3.5 h including the time required for nucleic acid extraction. The development of this assay provides a useful tool for the differential diagnosis of SVD or for the detection of SVDV in research applications. This study demonstrates the suitability of MGB probes as a real-time PCR chemistry for the diagnosis of swine vesicular disease. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The design of a 5' conjugated minor groove binder (MGB) probe real-time PCR assay is described for the rapid, sensitive and specific detection of African swine fever virus (ASFV) DNA. The assay is designed against the 9GL region and is capable of detecting 20 copies of a DNA standard. It does not detect any of the other common swine DNA viruses tested in this study. The assay can detect ASFV DNA in a range of clinical samples. Sensitivity was equivalent to the Office International des Epizooties (OIE) recommended TaqMan assay. In addition the assay was found to have a detection limit 10-fold more sensitive than the conventional PCR recommended by the OIE. Linear range was ten logs from 2 x 10(1) to 2 x 10(10). The assay is rapid with an amplification time just over 2 h. The development of this assay provides a useful tool for the specific diagnosis of ASF in statutory or emergency testing programs or for the detection of ASFV DNA in research applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Porcine circovirus type 2 (PCV-2) has been found to be the causative agent of postweaning multisystemic wasting syndrome (PMWS). However, PCV-2 is a ubiquitous virus in the swine population and a majority of pigs infected with PCV-2 do not develop the disease. Different factors such as age, maintenance, the genetics of PCV-2, other pathogens, etc. have been suggested to contribute to the development of PMWS. However, so far no proven connection between any of these factors and the disease development has been found. In this study we explored the possible presence of other so far unknown DNA containing infectious agents in lymph nodes collected from Swedish pigs with confirmed PMWS through random amplification and high-throughput sequencing. Although the vast majority of the amplified genetic sequences belonged to PCV-2, we also found genome sequences of Torque Teno virus (TTV) and of a novel parvovirus. The detection of TTV was expected since like PCV-2, TTV has been found to have high prevalence in pigs around the world. We were able to amplify a longer region of the parvovirus genome, consisting of the entire NP1 and partial VP1/2. By comparative analysis of the nucleotide sequences and phylogenetic studies we propose that this is a novel porcine parvovirus, with genetic relationship to bocaviruses.
Resumo:
Objective-TO determine whether commercial Mycoplasma hyopneumoniae bacterins sold for use in swine contain porcine torque teno virus (TTV).
Resumo:
Objective—To determine whether genogroup 1 porcine torque teno virus (g1-TTV) can potentiate clinical disease associated with porcine circovirus type 2 (PCV2).
Sample population—33 gnotobiotic baby pigs.
Procedures—Pigs were allocated into 7 groups: group A, 5 uninoculated control pigs from 3 litters; group B, 4 pigs oronasally inoculated with PCV2 alone; group C, 4 pigs inoculated IP with first-passage g1-TTV alone; group D, 4 pigs inoculated IP with fourth-passage g1-TTV alone; group E, 6 pigs inoculated IP with first-passage g1-TTV and then oronasally inoculated with PCV2 7 days later; group F, 6 pigs inoculated IP with fourth-passage g1-TTV and then inoculated oronasally with PCV2 7 days later; and group G, 4 pigs inoculated oro-nasally with PCV2 and then inoculated IP with fourth-passage g1-TTV 7 days later.
Results—6 of 12 pigs inoculated with g1-TTV prior to PCV2 developed acute onset of postweaning multisystemic wasting syndrome (PMWS). None of the pigs inoculated with g1-TTV alone or PCV2 alone or that were challenge exposed to g1-TTV after establishment of infection with PCV2 developed clinical illness. Uninoculated control pigs remained healthy.
Conclusions and Clinical Relevance—These data implicated g1-TTV as another viral infection that facilitates PCV2-induced PMWS. This raises the possibility that torque teno viruses in swine may contribute to disease expression currently associated with only a single infectious agent.