871 resultados para User-based collaborative filtering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel algorithm for Virtual View Synthesis based on Non-Local Means Filtering is presented in this paper. Apart from using the video frames from the nearby cameras and the corresponding per-pixel depth map, this algorithm also makes use of the previously synthesized frame. Simple and efficient, the algorithm can synthesize video at any given virtual viewpoint at a faster rate. In the process, the quality of the synthesized frame is not compromised. Experimental results prove the above mentioned claim. The subjective and objective quality of the synthesized frames are comparable to the existing algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose an algorithm for optical flow estimation using Approximate Nearest Neighbor Fields (ANNF). Proposed optical flow estimation algorithm consists of two steps, flow initialization using ANNF maps and cost filtering. Flow initialization is done by computing the ANNF map using FeatureMatch between two consecutive frames. The ANNF map obtained represents a noisy optical flow, which is refined by making use of superpixels. The best flow associated with each superpixel is computed by optimizing a cost function. The proposed approach is evaluated on Middlebury and MPI-Sintel optical flow dataset and is found to be comparable with the state of the art methods for optical flow estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disclosure of information and its misuse in Privacy Preserving Data Mining (PPDM) systems is a concern to the parties involved. In PPDM systems data is available amongst multiple parties collaborating to achieve cumulative mining accuracy. The vertically partitioned data available with the parties involved cannot provide accurate mining results when compared to the collaborative mining results. To overcome the privacy issue in data disclosure this paper describes a Key Distribution-Less Privacy Preserving Data Mining (KDLPPDM) system in which the publication of local association rules generated by the parties is published. The association rules are securely combined to form the combined rule set using the Commutative RSA algorithm. The combined rule sets established are used to classify or mine the data. The results discussed in this paper compare the accuracy of the rules generated using the C4. 5 based KDLPPDM system and the CS. 0 based KDLPPDM system using receiver operating characteristics curves (ROC).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of scaling up data integration, such that new sources can be quickly utilized as they are discovered, remains elusive: Global schemas for integrated data are difficult to develop and expand, and schema and record matching techniques are limited by the fact that data and metadata are often under-specified and must be disambiguated by data experts. One promising approach is to avoid using a global schema, and instead to develop keyword search-based data integration-where the system lazily discovers associations enabling it to join together matches to keywords, and return ranked results. The user is expected to understand the data domain and provide feedback about answers' quality. The system generalizes such feedback to learn how to correctly integrate data. A major open challenge is that under this model, the user only sees and offers feedback on a few ``top-'' results: This result set must be carefully selected to include answers of high relevance and answers that are highly informative when feedback is given on them. Existing systems merely focus on predicting relevance, by composing the scores of various schema and record matching algorithms. In this paper, we show how to predict the uncertainty associated with a query result's score, as well as how informative feedback is on a given result. We build upon these foundations to develop an active learning approach to keyword search-based data integration, and we validate the effectiveness of our solution over real data from several very different domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose optimal bilateral filtering techniques for Gaussian noise suppression in images. To achieve maximum denoising performance via optimal filter parameter selection, we adopt Stein's unbiased risk estimate (SURE)-an unbiased estimate of the mean-squared error (MSE). Unlike MSE, SURE is independent of the ground truth and can be used in practical scenarios where the ground truth is unavailable. In our recent work, we derived SURE expressions in the context of the bilateral filter and proposed SURE-optimal bilateral filter (SOBF). We selected the optimal parameters of SOBF using the SURE criterion. To further improve the denoising performance of SOBF, we propose variants of SOBF, namely, SURE-optimal multiresolution bilateral filter (SMBF), which involves optimal bilateral filtering in a wavelet framework, and SURE-optimal patch-based bilateral filter (SPBF), where the bilateral filter parameters are optimized on small image patches. Using SURE guarantees automated parameter selection. The multiresolution and localized denoising in SMBF and SPBF, respectively, yield superior denoising performance when compared with the globally optimal SOBF. Experimental validations and comparisons show that the proposed denoisers perform on par with some state-of-the-art denoising techniques. (C) 2015 SPIE and IS&T

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image inpainting is the process of filling the unwanted region in an image marked by the user. It is used for restoring old paintings and photographs, removal of red eyes from pictures, etc. In this paper, we propose an efficient inpainting algorithm which takes care of false edge propagation. We use the classical exemplar based technique to find out the priority term for each patch. To ensure that the edge content of the nearest neighbor patch found by minimizing L-2 distance between patches, we impose an additional constraint that the entropy of the patches be similar. Entropy of the patch acts as a good measure of edge content. Additionally, we fill the image by considering overlapping patches to ensure smoothness in the output. We use structural similarity index as the measure of similarity between ground truth and inpainted image. The results of the proposed approach on a number of examples on real and synthetic images show the effectiveness of our algorithm in removing objects and thin scratches or text written on image. It is also shown that the proposed approach is robust to the shape of the manually selected target. Our results compare favorably to those obtained by existing techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oversmoothing of speech parameter trajectories is one of the causes for quality degradation of HMM-based speech synthesis. Various methods have been proposed to overcome this effect, the most recent ones being global variance (GV) and modulation-spectrum-based post-filter (MSPF). However, there is still a significant quality gap between natural and synthesized speech. In this paper, we propose a two-fold post-filtering technique to alleviate to a certain extent the oversmoothing of spectral and excitation parameter trajectories of HMM-based speech synthesis. For the spectral parameters, we propose a sparse coding-based post-filter to match the trajectories of synthetic speech to that of natural speech, and for the excitation trajectory, we introduce a perceptually motivated post-filter. Experimental evaluations show quality improvement compared with existing methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inner ear has been shown to characterize an acoustic stimuli by transducing fluid motion in the inner ear to mechanical bending of stereocilia on the inner hair cells (IHCs). The excitation motion/energy transferred to an IHC is dependent on the frequency spectrum of the acoustic stimuli, and the spatial location of the IHC along the length of the basilar membrane (BM). Subsequently, the afferent auditory nerve fiber (ANF) bundle samples the encoded waveform in the IHCs by synapsing with them. In this work we focus on sampling of information by afferent ANFs from the IHCs, and show computationally that sampling at specific time instants is sufficient for decoding of time-varying acoustic spectrum embedded in the acoustic stimuli. The approach is based on sampling the signal at its zero-crossings and higher-order derivative zero-crossings. We show results of the approach on time-varying acoustic spectrum estimation from cricket call signal recording. The framework gives a time-domain and non-spatial processing perspective to auditory signal processing. The approach works on the full band signal, and is devoid of modeling any bandpass filtering mimicking the BM action. Instead, we motivate the approach from the perspective of event-triggered sampling by afferent ANFs on the stimuli encoded in the IHCs. Though the approach gives acoustic spectrum estimation but it is shallow on its complete understanding for plausible bio-mechanical replication with current mammalian auditory mechanics insights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was demonstrated in earlier work that, by approximating its range kernel using shiftable functions, the nonlinear bilateral filter can be computed using a series of fast convolutions. Previous approaches based on shiftable approximation have, however, been restricted to Gaussian range kernels. In this work, we propose a novel approximation that can be applied to any range kernel, provided it has a pointwise-convergent Fourier series. More specifically, we propose to approximate the Gaussian range kernel of the bilateral filter using a Fourier basis, where the coefficients of the basis are obtained by solving a series of least-squares problems. The coefficients can be efficiently computed using a recursive form of the QR decomposition. By controlling the cardinality of the Fourier basis, we can obtain a good tradeoff between the run-time and the filtering accuracy. In particular, we are able to guarantee subpixel accuracy for the overall filtering, which is not provided by the most existing methods for fast bilateral filtering. We present simulation results to demonstrate the speed and accuracy of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A common form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires O(sigma(2)) operations per pixel, where sigma is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to O(1) per pixel for any arbitrary sigma (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be efficiently implemented (in parallel) using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the previous paper, a class of nonlinear system is mapped to a so-called skeleton linear model (SLM) based on the joint time-frequency analysis method. Behavior of the nonlinear system may be indicated quantitatively by the variance of the coefficients of SLM versus its response. Using this model we propose an identification method for nonlinear systems based on nonstationary vibration data in this paper. The key technique in the identification procedure is a time-frequency filtering method by which solution of the SLM is extracted from the response data of the corresponding nonlinear system. Two time-frequency filtering methods are discussed here. One is based on the quadratic time-frequency distribution and its inverse transform, the other is based on the quadratic time-frequency distribution and the wavelet transform. Both numerical examples and an experimental application are given to illustrate the validity of the technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

e-Learning Developer, Charlie Williams, has improved efficiencies at Oaklands College with the introduction of LAMS, the Learning Activity Management System. Charlie has worked alongside teachers at the College to create activities for a range of individual tasks, small group work and whole classes, based on online content and collaboration. Since 2010, this blended learning environment has improved retention as students can work at hours that suit them, and has given teachers more time to work on future lessons and other tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CAMEL is short for Collaborative Approaches to the Management of e-Learning and was a project funded by the HEFCE Leadership, Governance and Management programme. It set out to explore how institutions who were making effective use of e-learning and who were collaborating in regional lifelong learning partnerships might be able to learn from each other in a Community of Practice based around study visits to each of the partner institutions. This short publication highlights some of the things CAMEL participants found out about e-learning and about each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional software development captures the user needs during the requirement analysis. The Web makes this endeavour even harder due to the difficulty to determine who these users are. In an attempt to tackle the heterogeneity of the user base, Web Personalization techniques are proposed to guide the users’ experience. In addition, Open Innovation allows organisations to look beyond their internal resources to develop new products or improve existing processes. This thesis sits in between by introducing Open Personalization as a means to incorporate actors other than webmasters in the personalization of web applications. The aim is to provide the technological basis that builds up a trusty environment for webmasters and companion actors to collaborate, i.e. "an architecture of participation". Such architecture very much depends on these actors’ profile. This work tackles three profiles (i.e. software partners, hobby programmers and end users), and proposes three "architectures of participation" tuned for each profile. Each architecture rests on different technologies: a .NET annotation library based on Inversion of Control for software partners, a Modding Interface in JavaScript for hobby programmers, and finally, a domain specific language for end-users. Proof-of-concept implementations are available for the three cases while a quantitative evaluation is conducted for the domain specific language.