935 resultados para Upper bound method
Resumo:
Basement rocks from the Ontong Java Plateau are tholeiitic basalts that appear to record very high degrees of partial melting, much like those found today in the vicinity of Iceland. They display a limited range of incompatible element and isotopic variation, but small differences are apparent between sampled sites and between upper and lower groups of flows at Ocean Drilling Program Site 807.40Ar-39Ar ages of lavas from Site 807 and Deep Sea Drilling Project Site 289 are indistinguishable about an early Aptian mean of 122 Ma (as are preliminary data for the island of Malaita at the southern edge of the plateau), indicating that plateau-building eruptions ended more or less simultaneously at widely separated locations. Pb-Nd-Sr isotopes for lavas from Sites 289, 803, and 807, as well as southern Malaita, reflect a hotspot-like source with epsilon-Nd(T) = +4.0 to +6.3, (87Sr/86Sr)T = 0.70423-0.70339, and 206Pb/204Pb = 18.245-18.709 and possessing consistently greater 208Pb/204Pb for a given 206Pb/204Pb than Pacific MORB. The combination of hotspot-like mantle source, very high degrees of melting, and lack of a discernible age progression is best explained if the bulk of the plateau was constructed rapidly above a surfacing plume head, possibly that of the Louisville hotspot. Basalt and feldspar separates indicate a substantially younger age of ~90 Ma for basement at Site 803; in addition, volcaniclastic layers of mid-Cenomanian through Coniacian age occur at DSDP Site 288, and beds of late Aptian-Albian age are found at Site 289. Therefore, at least some volcanism continued on the plateau for 30 m.y. or more. The basalts at Site 803 are chemically and isotopically very similar to those at the ~122 Ma sites, suggesting that hot plume-type mantle was present beneath the plateau for an extended period or at two different times. Surviving seamounts of the Louisville Ridge formed between 70 and 0 Ma have much higher 206Pb/204Pb than any of the plateau basalts. Thus, assuming the Louisville hotspot was the source of the plateau lavas, a change in the hotspot's isotopic composition may have occurred between roughly 70 and 90 Ma; such a change may have accompanied the plume-head to plume-tail transition. Similar shifts from early, lower 206Pb/204Pb to subsequently higher 206Pb/204Pb values are found in several other oceanic plateau-hotspot and continental flood basalt-hotspot systems, and could reflect either a reduction in the supply of low 206Pb/204Pb mantle or an inability of some off-ridge plume-tails to melt refractory low 206Pb/204Pb material.
Resumo:
This contribution summarizes the biostratigraphy of planktonic foraminifers, calcareous nannofossils, and benthic foraminifers, in combination with the magnetostratigraphy, carbon and oxygen isotope stratigraphy of benthic foraminifers, and CaCO3 stratigraphy for the Maestrichtian through Paleogene calcareous sequences recovered at Sites 689 and 690 on Maud Rise (at about 65°S, eastern Weddell Sea, Antarctica). These data represent the southernmost calciumcarbonate record available for that interval, and thus extend the biostratigraphic and isotopic database to higher latitudes. Sites 689 and 690 form the southernmost anchor of a north-south transect through the Atlantic Ocean for Paleogene biostratigraphy and chemostratigraphy.
Resumo:
The phytoplankton dataset is based on samples taken during March-April 2008 in Libyan Sea, Southern Aegean Sea and Northern Aegean Sea. Ingestion rates were estimated from experiments performed at all the third priority stations during the cruise according to DoW of Sesame project. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 100 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Calanus helgolandicus and Centropages typicus according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs/female/day) collected in the 0-100m layer. Copepod egg production was measured for the copepods Eucalanus monachus, Centropages typicus and Calanus helgolandicus. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mg/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).
Resumo:
Bottom sediment samples were collected in the Central Mediterranean, Southern Adriatic, Tyrrhenian, Algerian-Provencal, and Alboran basins of the Mediterranean Sea. Fifty-six datings were done for 12 sediment cores. The lowest sedimentation rates during Holocene were found on the abyssal plain of the Algerian-Provencal basin (2.4-4.0 cm/ky). In the Southern Adriatic, Tyrrhenian, and Alboran basins sedimentation rates were somewhat higher (6-12 cm/ky). On slopes of the Southern Adriatic and Tyrrhenian basins during Late Würm glaciation rates of "normal" sedimentation were within the range 11.8-26.8 cm/ky.
Resumo:
Abyssal agglutinated foraminifers allow biostratigraphic correlation of Upper Cretaceous brown zeolitic claystones in Deep Sea Drilling Project Holes 196A and 198A and Ocean Drilling Program Holes 800A and 801 A. Three agglutinated foraminiferal zones subdivide the strata overlying the Campanian to Cenomanian cherts. The lower zone is characterized by Hormosina gigantea, which is a Campanian zonal marker in the North Atlantic Ocean and western Tethys. A major correlation level, which was observed in all holes studied, is based on the acme of evolute Haplophragmoides spp. This acme zone was observed in Sample 129-801A-6R-CC, about 9 m above the first occurrence of H. gigantea in Sample 129-801A-7R-1, 62-67 cm (approximately middle Campanian). The uppermost zone is characterized by dominant Paratrochamminoides spp. and in some instances common Bolivinopsis parvissimus (late Campanian to Maestrichtian). The available biostratigraphic data for the Upper Cretaceous of Sites 196, 198, 800, and 801 are correlated with the biochronologic framework of the North Atlantic, western Mediterranean, and Carpathians. Additionally, we use quantitative estimates of the diversity and abundance of agglutinated foraminiferal species to monitor general faunal trends with time in the western Pacific.
Resumo:
During Cruise 46 of R/V Akademik Mstislav Keldysh (from June to September 2001), vertical distributions of Radiolaria (Acantharia - Bac and Euradiolaria - Beur), mesozooplankton (from 0.2 to 3.0 mm size, Bm), and chlorophyll a (Cchl) in the epipelagic zone of the North Atlantic were studied. To examine the above-listed characteristics, samples were taken by Niskin 30 l bottles from 12-16 depth levels within the upper 100 to 200 m layer in the subarctic (48°11'N, 16°06'W) and subtropical (27°31'N, 75°51'W) waters, as well as in the transitional zone (41°44'N, 49°57'W). The latter proved to be characterized by the highest values of all averaged parameters examined by us within the upper 100 m layer (Bm - 365mg/m**3, Bac - 140 mg/m**3, Beur - 0.37 mg/m**3, and Cchl - 0.32 mg/m**3). For subarctic and subtropical waters corresponding characteristics were as follows: Bm - 123 and 53 mg/m**3, Bac - 0 and 0.06 mg/m**3, Beur - 0.17 and 0.19 mg/m**3, and Cchl - 0.27 and 0.05 mg/m**3, respectively. Percentage of Acantharia in total biomass of Radiolaria and zooplankton ranged from 0 to 39%, whereas that of Euradiolaria varied from 0.01 to 0.36%. Depth levels with maximum abundance of Acantharia were located above maxima of zooplankton and chlorophyll a or coincided with them. As for Euradiolaria, vertical profiles of their biomass were more diverse as compared with Acantharia. The latter group preferred more illuminated depth levels for its maximum development (10-100% of surface irradiance, E0) with respect to Euradiolaria (1-60% of E0). Possible reasons for this difference are discussed.
Resumo:
in preparation