993 resultados para Unsteady flow
Resumo:
A nonequilibrium generalization of the density-functional theory of freezing is proposed to investigate the shear-induced first-order phase transition in colloidal suspensions. It is assumed that the main effect of a steady shear is to break the symmetry of the structure factor of the liquid and that for small shear rate, the phenomenon of a shear-induced order-disorder transition may be viewed as an equilibrium phase transition. The theory predicts that the effective density at which freezing takes place increases with shear rate. The solid (which is assumed to be a bcc lattice) formed upon freezing is distorted and specifically there is less order in one plane compared with the order in the other two perpendicular planes. It is shown that there exists a critical shear rate above which the colloidal liquid does not undergo a transition to an ordered (or partially ordered) state no matter how large the density is. Conversely, above the critical shear rate an initially formed bcc solid always melts into an amorphous or liquidlike state. Several of these predictions are in qualitative agreement with the light-scattering experiments of Ackerson and Clark. The limitations as well as possible extensions of the theory are also discussed.
Resumo:
The steady laminar compressible boundary-layer swirling flow with variable gas properties and mass transfer through a conical nozzle, and a diffuser with a highly cooled wall has been studied. The partial differential equations governing the nonsimilar flow have been transformed to a system of coordinates using modified Lees transformation. The resulting equations are transformed into coordinates having finite ranges by means of a transformation which maps an infinite region into a finite region. The ensuing equations are then solved numerically using an implicit finite-difference scheme. The results indicate that the variation of the density-viscosity product across the boundary layer and mass transfer have strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying suction. The results are found to be in good agreement with those of the local nonsimilarity method but they differ appreciably from those of the local similarity method.
Resumo:
The axisymmetric steady laminar compressible boundary layer swirling flow of a gas with variable properties in a nozzle has been investigated. The partial differential equations governing the non-similar flow have been transformed into new co-ordinates having finite ranges by means of a transformation which maps an infinite range into a finite one. The resulting equations have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for compressible swirling flow through a convergent conical nozzle. The results indicate that the swirl exerts a strong influence on the longitudinal skin friction, but its effect on the tangential skin friction and heat transfer is comparatively small. The effect of the variation of the density-viscosity product across the boundary layer is appreciable only at low-wall temperature. The results are in good agreement with those of the local-similarity method for small values of the longitudinal distance.
Resumo:
The effect of surface mass transfer velocities having normal, principal and transverse direction components (�vectored� suction and injection) on the steady, laminar, compressible boundary layer at a three-dimensional stagnation point has been investigated both for nodal and saddle points of attachment. The similarity solutions of the boundary layer equations were obtained numerically by the method of parametric differentiation. The principal and transverse direction surface mass transfer velocities significantly affect the skin friction (both in the principal and transverse directions) and the heat transfer. Also the inadequacy of assuming a linear viscosity-temperature relation at low-wall temperatures is shown.
Resumo:
Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-agrGalNAc and for jack fruit agglutinin (JFA) is Me-agrGal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M–1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M–1 sec–1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10–2, 83.3 sec–1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.
Resumo:
A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.
Resumo:
The characteristics of the separated flow behind a diaphragm over a burning surface are investigated experimentally. This complex problem of practical significance involving recirculation, blowing and combustion reactions is studied in a two-dimensional combustion tunnel. The flame structure, recirculation patterns and heat transfer to the surface are presented for a range of values of free stream and fuel injection velocities as well as for different heights of the diaphragm. The trends of heat transfer vs axial distance are shown to be similar to those resulting from a non-reactive heated stream with a diaphragm. Treating the case of a boundary layer diffusion flame as that corresponding to the zero height of the diaphragm, the heat transfer augmentation due to recirculation is estimated. It is found that at considerable downstream distances (xfh > 3), the heat transfer rates with diaphragm overtake the rates from a developing boundary layer case. Flow visualization studies with particle track photography show that there are many similarities between the reactive and the non-reactive cases.
Resumo:
Steady laminar flow of a non-Newtonian fluid based on couple stress fluid theory, through narrow tubes of varying cross-sections has been studied theoretically. Asymptotic solutions are obtained for the basic equations and the expressions for the velocity field and the wall shear stress are derived for a general cross-section. Computation and discussions are carried out for the geometries which occur in the context of physiological flows or in particular blood flows. The tapered tubes and constricted tubes are of special importance. It is observed that increase in certain parameters results in erratic flow behaviour proximal to the constricted areas which is further enhanced by the increase in the geometric parameters. This elucidates the implications of the flow in the development of vascular lesions.
Resumo:
The study presents a theory of utility models based on aspiration levels, as well as the application of this theory to the planning of timber flow economics. The first part of the study comprises a derivation of the utility-theoretic basis for the application of aspiration levels. Two basic models are dealt with: the additive and the multiplicative. Applied here solely for partial utility functions, aspiration and reservation levels are interpreted as defining piecewisely linear functions. The standpoint of the choices of the decision-maker is emphasized by the use of indifference curves. The second part of the study introduces a model for the management of timber flows. The model is based on the assumption that the decision-maker is willing to specify a shape of income flow which is different from that of the capital-theoretic optimum. The utility model comprises four aspiration-based compound utility functions. The theory and the flow model are tested numerically by computations covering three forest holdings. The results show that the additive model is sensitive even to slight changes in relative importances and aspiration levels. This applies particularly to nearly linear production possibility boundaries of monetary variables. The multiplicative model, on the other hand, is stable because it generates strictly convex indifference curves. Due to a higher marginal rate of substitution, the multiplicative model implies a stronger dependence on forest management than the additive function. For income trajectory optimization, a method utilizing an income trajectory index is more efficient than one based on the use of aspiration levels per management period. Smooth trajectories can be attained by squaring the deviations of the feasible trajectories from the desired one.