997 resultados para Unstable conditions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific objectives were to: WATER QUALITY 1. To measure the water physical variables as indicators of environmental conditions in the upstream and downstream transects of Kalange (1) and Buyala (2), respectively, 2. To determine the concentrations of total suspended solids as a major constituent likely to be released into the waters at any time during the construction activities, by comparing the concentrations at the two transects. FISH CATCH 1. To follow up trends in fish catch as construction activity progresses, and to precision of the estimate; 2. To estimate the prevailing fish catch rates, total fish catches and the total value of the fish catch to the local fishers at the two transects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicities of four insecticides and a herbicide to Tilapia macrochir were tested in the laboratory. The 24 hour LC50's were estimated as follows: Endrin 20% ,0.008 ppm; Lindane 5% granules, 4.6 ppmm; Synexa 50 (HCH) 50%), 5.6 ppm; Synex 25 (HCH 25%), 14.8 ppm; TOK herbicide (Nitrofen), 100% survival for 24 hours at 100 ppm. These estimates agree with results obtained by other workers elsewhere in the world. The laboratory determination of toxicity is important in estimating the direct effects of poisonous substances on fish, but other indirect effects may result from their use. These should be investigated in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By far the greater part of our understanding about stall and surge in axial compressors comes from work on low-speed laboratory machines. As a general rule, these machines do not model the compressibility effects present in high-speed compressors and therefore doubt has always existed about the application of low-speed results to high-speed machines. In recent years interest in active control has led to a number of studies of compressor stability in engine type compressors. This paper presents new data from an eight-stage fixed geometry engine compressor and compares this with low-speed laboratory data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instability triggering and transient growth of thermoacoustic oscillations were experimentally investigated in combination with linear/nonlinear flame transfer function (FTF) methodology in a model lean-premixed gas turbine combustor operated with CH 4 and air at atmospheric pressure. A fully premixed flame with 10kW thermal power and an equivalence ratio of 0.60 was chosen for detailed characterization of the nonlinear transient behaviors. Flame transfer functions were experimentally determined by simultaneous measurements of inlet velocity fluctuations and heat release rate oscillations using a constant temperature anemometer and OH */CH * chemiluminescence emissions, respectively. The phase-resolved variation of the local flame structure at a limit cycle was measured by planar laser-induced fluorescence of OH. Simultaneous measurements of inlet velocity, OH */CH * emission, and acoustic pressure were performed to investigate the temporal evolution of the system from a stable to a limit cycle operation. This measurement allows us to describe an unsteady instability triggering event in terms of several distinct stages: (i) initiation of a small perturbation, (ii) exponential amplification, (iii) saturation, (iv) nonlinear evolution of the perturbations towards a new unstable periodic state, (v) quasi-steady low-amplitude periodic oscillation, and (vi) fully-developed high-amplitude limit cycle oscillation. Phase-plane portraits of instantaneous inlet velocity and heat release rate clearly show the presence of two different attractors. Depending on its initial position in phase space at infinitesimally small amplitude, the system evolves towards either a high-amplitude oscillatory state or a low-amplitude oscillatory state. This transient phenomenon was analyzed using frequency- and amplitude-dependent damping mechanisms, and compared to subcritical and supercritical bifurcation theories. The results presented in this paper experimentally demonstrate the hypothesis proposed by Preetham et al. based on analytical and computational solutions of the nonlinear G-equation [J. Propul. Power 24 (2008) 1390-1402]. Good quantitative agreement was obtained between measurements and predictions in terms of the conditions for the onset of triggering and the amplitude of triggered combustion instabilities. © 2011 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attrition of two potential oxygen-carriers for chemical-looping, 100. wt% mechanically-mixed, unsupported iron oxide (400-600 μm diameter) and 25. wt% copper oxide impregnated on alumina (600-900 μm diameter), has been studied. The rates of attrition of batches of these particles whilst they were being fluidised and subjected to successive cycles of reduction and oxidation were determined by measuring the rate of production of fine particles elutriated from the bed, as well as progressive changes in the distribution of particle sizes retained in the bed. The ability of the particles to withstand impacts was also investigated by examining the degree of fragmentation of 1. g of reacted particles of known size on projecting them at a target at various velocities. It was found that the mechanical strength of the iron oxide particles deteriorated significantly after repeated cycles of oxidation and reduction. Thus, the rate of elutriation increased ~35-fold between the 1st and 10th cycle. At an impact velocity of 38. m/s, the amount of fragmentation in the impact test, viz. mass fraction of particles after impact having a size less than that before impact, increased from ~2.3. wt% (fresh particles) to 98. wt% after the 10th cycle. The CuO particles, in comparison, were able to withstand repeated reaction: no signs of increased rates of elutriation or fragmentation were observed over ten cycles. These results highlight the importance of selecting a durable support for oxygen-carriers. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally unstable wakes with co-flow at intermediate Reynolds numbers are studied, to quantify important spatial regions for the development and control of the global instability. One region of high structural sensitivity is found close to the inlet for all wakes, in agreement with previous findings for cylinder wakes. A second, elongated region of high structural sensitivity is seen downstream of the first one for unconfined wakes at Re = 400. When base flow modifications are considered, a spatially oscillating sensitivity pattern is found inside the downstream high structural sensitivity region. This implies that the same change in the base flow can either destabilize or stabilize the flow, depending on the exact position where it is applied. It is shown that the sensitivity pattern remains unchanged for different choices of streamwise boundary conditions and numerical resolution. Actual base flow modifications are applied in selected configurations, and the linear global modes recomputed. It is confirmed that the linear global eigenvalues move according to the predicted sensitivity pattern for small amplitude base flow modifications, for which the theory applies. We also look at the implications of a small control cylinder on the flow. Only the upstream high sensitivity region proves to be robust in terms of control, but one should be careful not to disturb the flow in the downstream high sensitivity region, in order to achieve control. The findings can have direct implications on the numerical resolution requirements for wakes at higher Reynolds numbers. Furthermore, they provide one more possible explanation to why confined wakes have a more narrow frequency spectrum than unconfined wakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When tracking resources in large-scale, congested, outdoor construction sites, the cost and time for purchasing, installing and maintaining the position sensors needed to track thousands of materials, and hundreds of equipment and personnel can be significant. To alleviate this problem a novel vision based tracking method that allows each sensor (camera) to monitor the position of multiple entities simultaneously has been proposed. This paper presents the full-scale validation experiments for this method. The validation included testing the method under harsh conditions at a variety of mega-project construction sites. The procedure for collecting data from the sites, the testing procedure, metrics, and results are reported. Full-scale validation demonstrates that the novel vision tracking provides a good solution to track different entities on a large, congested construction site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. © 2012 Kadiallah et al.