982 resultados para University of South Carolina Union--Funds and scholarships
Resumo:
Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.
Resumo:
This layer is a georeferenced raster image of the historic paper map: Charleston Harbor and its approaches showing the positions of the Rebel-batteries, [by] U.S. Coast Survey. It was published in 1863 by Lith. of J. Bien. Scale 1:30,000. Nautical chart covering Charleston Harbor and a portion of Charleston, South Carolina. The image inside the map neatline is georeferenced to the surface of the earth and fit to the South Carolina State Plane Coordinate System (in Meters) (Fipszone 3900). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, houses, vegetation, drainage, military batteries and fortifications, coastal features (shoals, rocks, channels, floating batteries, etc.) and more. Overprinted to show 1/4-mile concentric circles centered on St. Michaels, Charleston; positions occupied by the Union Army and Navy; "Rebel batteries in possession of National forces [and] batteries still held by the Rebels [on] Sept. 7th 1863." Union positions are based "on the authority of Maj. T.B. Brooks." Relief shown by hachures; depths shown by soundings and shading. This layer is part of a selection of digitally scanned and georeferenced historic maps of the Civil War from the Harvard Map Collection. Many items from this selection are from a collection of maps deposited by the Military Order of the Loyal Legion of the United States Commandery of the State of Massachusetts (MOLLUS) in the Harvard Map Collection in 1938. These maps typically portray both natural and manmade features, in particular showing places of military importance. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This paper seeks to explain why the European Union (EU) has had limited influence in Armenia and Azerbaijan in the framework of the European Neighbourhood Policy (ENP). Combining approaches from external governance, norm diffusion and structural foreign policy, it offers an explanation based on domestic factors in the two countries: the political regime, state capacity, political structures, domestic incentives and the perceived legitimacy of EU rules. Although willingness to reform appears to exist in Armenia, such willingness remains constrained by the country’s vulnerable geopolitical location and high dependence on Russia. By contrast, none of the domestic preconditions for EU influence identified by the analytical framework were found in Azerbaijan. The author argues that the Eastern Partnership has not properly addressed the extent to which the clan structures feed into informal political practices and enforce the sustainability of an existing regime in both countries, and that, in addition, the EU has underestimated the multipolar environment which the two countries have to operate in, making it unlikely that the current policy can reach its objectives in Armenia and Azerbaijan.
Resumo:
Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.
Resumo:
We investigated changes in tropical climate and vegetation cover associated with abrupt climate change during Heinrich Event 1 (HE1, ca. 17.5 ka BP) using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). Tropical South American and African pollen records suggest that the cooling of the North Atlantic Ocean during HE1 influenced the tropics through a southward shift of the rain belt. In this study, we simulated the HE1 by applying a freshwater perturbation to the North Atlantic Ocean. The resulting slowdown of the Atlantic Meridional Overturning Circulation was followed by a temperature seesaw between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rain belt. The shift and the response pattern of the tropical vegetation around the Atlantic Ocean were more pronounced in the CCSM3 than in the UVic ESCM simulation. For tropical South America, opposite changes in tree and grass cover were modeled around 10° S in the CCSM3 but not in the UVic ESCM. In tropical Africa, the grass cover increased and the tree cover decreased around 15° N in the UVic ESCM and around 10° N in the CCSM3. In the CCSM3 model, the tree and grass cover in tropical Southeast Asia responded to the abrupt climate change during the HE1, which could not be found in the UVic ESCM. The biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.
Resumo:
Under the provisions of the will of John Nicholas Brown, the collection was transferred in 1901 to Brown university.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
Report year irregular.
Resumo:
Issues for <1948>-1960 have title in Afrikaans: Wette van die Unie van Suid-Afrika.
Resumo:
At head of title: Royal Commission on the Natural Resources, Trade, and Legislation of certain portions of His Majesty's Dominions.