957 resultados para Two-Fluid Model
Resumo:
En esta tesis se investiga de forma experimental el transporte pasivo de magnitudes físicas en micro-sistemas con carácter de inmediata aplicación industrial, usando métodos innovadores para mejorar la eficiencia de los mismos optimizando parámetros críticos del diseño o encontrar nuevos destinos de posible aplicación. Parte de los resultados obtenidos en estos experimentos han sido publicados en revistas con un índice de impacto tal que pertenecen al primer cuarto del JCR. Primero de todo se ha analizado el efecto que produce en un intercambiador de calor basado en micro-canales el hecho de dejar un espacio entre canales y tapa superior para la interconexión de los mismos. Esto genera efectos tridimensionales que mejoran la exracción de calor del intercambiador y reducen la caída de presión que aparece por el transcurso del fluido a través de los micro-canales, lo que tiene un gran impacto en la potencia que ha de suministrar la bomba de refrigerante. Se ha analizado también la mejora producida en términos de calor disipado de un micro-procesador refrigerado con un ampliamente usado plato de aletas al implementar en éste una cámara de vapor que almacena un fluido bifásico. Se ha desarrollado de forma paralela un modelo numérico para optimizar las nuevas dimensiones del plato de aletas modificado compatibles con una serie de requerimientos de diseño en el que tanto las dimensiones como el peso juegan un papel esencial. Por otro lado, se han estudiado los fenomenos fluido-dinámicos que aparecen aguas abajo de un cuerpo romo en el seno de un fluido fluyendo por un canal con una alta relación de bloqueo. Los resultados de este estudio confirman, de forma experimental, la existencia de un régimen intermedio, caracterizado por el desarrollo de una burbuja de recirculación oscilante entre los regímenes, bien diferenciados, de burbuja de recirculación estacionaria y calle de torbellinos de Karman, como función del número de Reynolds del flujo incidente. Para la obtención, análisis y post-proceso de los datos, se ha contado con la ayuda de un sistema de Velocimetría por Imágenes de Partículas (PIV). Finalmente y como adición a este último punto, se ha estudiado las vibraciones de un cuerpo romo producidas por el desprendimiento de torbellinos en un canal de alta relación de bloqueo con la base obtenida del estudio anterior. El prisma se mueve con un movimiento armónico simple para un intervalo de números de Reynolds y este movimiento se transforma en vibración alrededor de su eje a partir de un ciero número de Reynolds. En relación al fluido, el régimen de desprendimiento de torbellinos se alcanza a menores números de Reynolds que en el caso de tener el cuerpo romo fijo. Uniendo estos dos registros de movimientos y variando la relación de masas entre prisma y fluido se obtiene un mapa con diferentes estados globales del sistema. Esto no solo tiene aplicación como método para promover el mezclado sino también como método para obtener energía a partir del movimiento del cuerpo en el seno del fluido. Abstract In this thesis, experimental research focused on passive scalar transport is performed in micro-systems with marked sense of industrial application, using innovative methods in order to obtain better performances optimizing critical design parameters or finding new utilities. Part of the results obtained in these experiments have been published into high impact factor journals belonged to the first quarter of the Journal Citation Reports (JCR). First of all the effect of tip clearance in a micro-channel based heat sink is analyzed. Leaving a gap between channels and top cover, letting the channels communicate each other causes three-dimensional effects which improve the heat transfer between fluid and heat sink and also reducing the pressure drop caused by the fluid passing through the micro-channels which has a great impact on the total cooling pumping power needed. It is also analyzed the enhancement produced in terms of dissipated heat in a micro-processor cooling system by improving the predominantly used fin plate with a vapour chamber based heat spreader which contains a two-phase fluid inside. It has also been developed at the same time a numerical model to optimize the new fin plate dimensions compatible with a series of design requirements in which both size and wight plays a very restrictive role. On the other hand, fluid-dynamics phenomena that appears downstream of a bluff body in the bosom of a fluid flow with high blockage ratio has been studied. This research experimentally confirms the existence of an intermediate regime characterized by an oscillating closed recirculation bubble intermediate regime between the steady closed recirculation bubble regime and the vortex shedding regime (Karman street like regime) as a function of the incoming flow Reynolds number. A particle image velocimetry technique (PIV) has been used in order to obtain, analyze and post-process the fluid-dynamic data. Finally and as an addition to the last point, a study on the vortexinduced vibrations (VIV) of a bluff body inside a high blockage ratio channel has been carried out taking advantage of the results obtained with the fixed square prism. The prism moves with simple harmonic motion for a Reynolds number interval and this movement becomes vibrational around its axial axis after overcoming at definite Reynolds number. Regarding the fluid, vortex shedding regime is reached at Reynolds numbers lower than the previous critical ones. Merging both movement spectra and varying the square prism to fluid mass ratio, a map with different global states is reached. This is not only applicable as a mixing enhancement technique but as an energy harvesting method.
Resumo:
We consider a mathematical model for the spatio-temporal evolution of two biological species in a competitive situation. Besides diffusing, both species move toward higher concentrations of a chemical substance which is produced by themselves. The resulting system consists of two parabolic equations with Lotka–Volterra-type kinetic terms and chemotactic cross-diffusion, along with an elliptic equation describing the behavior of the chemical. We study the question in how far the phenomenon of competitive exclusion occurs in such a context. We identify parameter regimes for which indeed one of the species dies out asymptotically, whereas the other reaches its carrying capacity in the large time limit.
Resumo:
In this paper we consider a system of three parabolic equations modeling the behavior of two biological species moving attracted by a chemical factor. The chemical substance verifies a parabolic equation with slow diffusion. The system contains second order terms in the first two equations modeling the chemotactic effects. We apply an iterative method to obtain the global existence of solutions using that the total mass of the biological species is conserved. The stability of the homogeneous steady states is studied by using an energy method. A final example is presented to illustrate the theoretical results.
Resumo:
Este trabajo presenta un método discreto para el cálculo de estabilidad hidrodinámica y análisis de sensibilidad a perturbaciones externas para ecuaciones diferenciales y en particular para las ecuaciones de Navier-Stokes compressible. Se utiliza una aproximación con variable compleja para obtener una precisión analítica en la evaluación de la matriz Jacobiana. Además, mapas de sensibilidad para la sensibilidad a las modificaciones del flujo de base y a una fuerza constante permiten identificar las regiones del campo fluido donde una modificacin (ej. fuerza puntual) tiene un efecto estabilizador del flujo. Se presentan cuatro casos de prueba: (1) un caso analítico para comprobar la derivación discreta, (2) una cavidad cerrada a bajo Reynolds para mostrar la mayor precisión en el cálculo de los valores propios con la aproximación de paso complejo, (3) flujo 2D en un cilindro circular para validar la metodología, y (4) flujo en un cavidad abierta, presentado para validar el método en casos de inestabilidades convectivamente inestables. Los tres últimos casos mencionados (2-4) se resolvieron con las ecuaciones de Navier-Stokes compresibles, utilizando un método Discontinuous Galerkin Spectral Element Method. Se obtuvo una buena concordancia para el caso de validación (3), cuando se comparó el nuevo método con resultados de la literatura. Además, este trabajo muestra que para el cálculo de los modos propios directos y adjuntos, así como para los mapas de sensibilidad, el uso de variables complejas es de suprema importancia para obtener una predicción precisa. El método descrito es aplicado al análisis para la estabilización de la estela generada por un disco actuador, que representa un modelo sencillo para hélices, rotores de helicópteros o turbinas eólicas. Se explora la primera bifurcación del flujo para un disco actuador, y se sugiere que está asociada a una inestabilidad de tipo Kelvin-Helmholtz, cuya estabilidad se controla con en el número de Reynolds y en la resistencia del disco actuador (o fuerza resistente). En primer lugar, se verifica que la disminución de la resistencia del disco tiene un efecto estabilizador parecido a una disminución del Reynolds. En segundo lugar, el análisis hidrodinmico discreto identifica dos regiones para la colocación de una fuerza puntual que controle las inestabilidades, una cerca del disco y otra en una zona aguas abajo. En tercer lugar, se muestra que la inclusión de un forzamiento localizado cerca del actuador produce una estabilización más eficiente que al forzar aguas abajo. El análisis de los campos de flujo controlados confirma que modificando el gradiente de velocidad cerca del actuador es más eficiente para estabilizar la estela. Estos resultados podrían proporcionar nuevas directrices para la estabilización de la estela de turbinas de viento o de marea cuando estén instaladas en un parque eólico y minimizar las interacciones no estacionarias entre turbinas. ABSTRACT A discrete framework for computing the global stability and sensitivity analysis to external perturbations for any set of partial differential equations is presented. In particular, a complex-step approximation is used to achieve near analytical accuracy for the evaluation of the Jacobian matrix. Sensitivity maps for the sensitivity to base flow modifications and to a steady force are computed to identify regions of the flow field where an input could have a stabilising effect. Four test cases are presented: (1) an analytical test case to prove the theory of the discrete framework, (2) a lid-driven cavity at low Reynolds case to show the improved accuracy in the calculation of the eigenvalues when using the complex-step approximation, (3) the 2D flow past a circular cylinder at just below the critical Reynolds number is used to validate the methodology, and finally, (4) the flow past an open cavity is presented to give an example of the discrete method applied to a convectively unstable case. The latter three (2–4) of the aforementioned cases were solved with the 2D compressible Navier–Stokes equations using a Discontinuous Galerkin Spectral Element Method. Good agreement was obtained for the validation test case, (3), with appropriate results in the literature. Furthermore, it is shown that for the calculation of the direct and adjoint eigenmodes and their sensitivity maps to external perturbations, the use of complex variables is paramount for obtaining an accurate prediction. An analysis for stabilising the wake past an actuator disc, which represents a simple model for propellers, helicopter rotors or wind turbines is also presented. We explore the first flow bifurcation for an actuator disc and it suggests that it is associated to a Kelvin- Helmholtz type instability whose stability relies on the Reynolds number and the flow resistance applied through the disc (or actuator forcing). First, we report that decreasing the disc resistance has a similar stabilising effect to an decrease in the Reynolds number. Second, a discrete sensitivity analysis identifies two regions for suitable placement of flow control forcing, one close to the disc and one far downstream where the instability originates. Third, we show that adding a localised forcing close to the actuator provides more stabilisation that forcing far downstream. The analysis of the controlled flow fields, confirms that modifying the velocity gradient close to the actuator is more efficient to stabilise the wake than controlling the sheared flow far downstream. An interesting application of these results is to provide guidelines for stabilising the wake of wind or tidal turbines when placed in an energy farm to minimise unsteady interactions.
Resumo:
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.
Resumo:
Application of electric fields tangent to the plane of a confined patch of fluid bilayer membrane can create lateral concentration gradients of the lipids. A thermodynamic model of this steady-state behavior is developed for binary systems and tested with experiments in supported lipid bilayers. The model uses Flory’s approximation for the entropy of mixing and allows for effects arising when the components have different molecular areas. In the special case of equal area molecules the concentration gradient reduces to a Fermi–Dirac distribution. The theory is extended to include effects from charged molecules in the membrane. Calculations show that surface charge on the supporting substrate substantially screens electrostatic interactions within the membrane. It also is shown that concentration profiles can be affected by other intermolecular interactions such as clustering. Qualitative agreement with this prediction is provided by comparing phosphatidylserine- and cardiolipin-containing membranes.
Resumo:
We give conditions that rule out formation of sharp fronts for certain two-dimensional incompressible flows. We show that a necessary condition of having a sharp front is that the flow has to have uncontrolled velocity growth. In the case of the quasi-geostrophic equation and two-dimensional Euler equation, we obtain estimates on the formation of semi-uniform fronts.
Resumo:
The kinetics of amyloid fibril formation by beta-amyloid peptide (Abeta) are typical of a nucleation-dependent polymerization mechanism. This type of mechanism suggests that the study of the interaction of Abeta with itself can provide some valuable insights into Alzheimer disease amyloidosis. Interaction of Abeta with itself was explored with the yeast two-hybrid system. Fusion proteins were created by linking the Abeta fragment to a LexA DNA-binding domain (bait) and also to a B42 transactivation domain (prey). Protein-protein interactions were measured by expression of these fusion proteins in Saccharomyces cerevisiae harboring lacZ (beta-galactosidase) and LEU2 (leucine utilization) genes under the control of LexA-dependent operators. This approach suggests that the Abeta molecule is capable of interacting with itself in vivo in the yeast cell nucleus. LexA protein fused to the Drosophila protein bicoid (LexA-bicoid) failed to interact with the B42 fragment fused to Abeta, indicating that the observed Abeta-Abeta interaction was specific. Specificity was further shown by the finding that no significant interaction was observed in yeast expressing LexA-Abeta bait when the B42 transactivation domain was fused to an Abeta fragment with Phe-Phe at residues 19 and 20 replaced by Thr-Thr (AbetaTT), a finding that is consistent with in vitro observations made by others. Moreover, when a peptide fragment bearing this substitution was mixed with native Abeta-(1-40), it inhibited formation of fibrils in vitro as examined by electron microscopy. The findings presented in this paper suggest that the two-hybrid system can be used to study the interaction of Abeta monomers and to define the peptide sequences that may be important in nucleation-dependent aggregation.
Resumo:
Despite the critical role that terrestrial vegetation plays in the Earth's carbon cycle, very little is known about the potential evolutionary responses of plants to anthropogenically induced increases in concentrations of atmospheric CO2. We present experimental evidence that rising CO2 concentration may have a direct impact on the genetic composition and diversity of plant populations but is unlikely to result in selection favoring genotypes that exhibit increased productivity in a CO2-enriched atmosphere. Experimental populations of an annual plant (Abutilon theophrasti, velvetleaf) and a temperate forest tree (Betula alleghaniensis, yellow birch) displayed responses to increased CO2 that were both strongly density-dependent and genotype-specific. In competitive stands, a higher concentration of CO2 resulted in pronounced shifts in genetic composition, even though overall CO2-induced productivity enhancements were small. For the annual species, quantitative estimates of response to selection under competition were 3 times higher at the elevated CO2 level. However, genotypes that displayed the highest growth responses to CO2 when grown in the absence of competition did not have the highest fitness in competitive stands. We suggest that increased CO2 intensified interplant competition and that selection favored genotypes with a greater ability to compete for resources other than CO2. Thus, while increased CO2 may enhance rates of selection in populations of competing plants, it is unlikely to result in the evolution of increased CO2 responsiveness or to operate as an important feedback in the global carbon cycle. However, the increased intensity of selection and drift driven by rising CO2 levels may have an impact on the genetic diversity in plant populations.
Resumo:
The acyclic nucleoside phosphonate analog 9-(2-phosphonylmethoxyethyl)adenine (PMEA) was recently found to be effective as an inhibitor of visna virus replication and cytopathic effect in sheep choroid plexus cultures. To study whether PMEA also affects visna virus infection in sheep, two groups of four lambs each were inoculated intracerebrally with 10(6.3) TCID50 of visna virus strain KV1772 and treated subcutaneously three times a week with PMEA at 10 and 25 mg/kg, respectively. The treatment was begun on the day of virus inoculation and continued for 6 weeks. A group of four lambs were infected in the same way but were not treated. The lambs were bled weekly or biweekly and the leukocytes were tested for virus. At 7 weeks after infection, the animals were sacrificed, and cerebrospinal fluid (CSF) and samples of tissue from various areas of the brain and from lungs, spleen, and lymph nodes were collected for isolation of virus and for histopathologic examination. The PMEA treatment had a striking effect on visna virus infection, which was similar for both doses of the drug. Thus, the frequency of virus isolations was much lower in PMEA-treated than in untreated lambs. The difference was particularly pronounced in the blood, CSF, and brain tissue. Furthermore, CSF cell counts were much lower and inflammatory lesions in the brain were much less severe in the treated lambs than in the untreated controls. The results indicate that PMEA inhibits the propagation and spread of visna virus in infected lambs and prevents brain lesions, at least during early infection. The drug caused no noticeable side effects during the 6 weeks of treatment.
Resumo:
Using precursor tRNA molecules to study RNA-protein interactions, we have identified an RNA motif recognized by eukaryotic RNase P (EC 3.1.26.5). Analysis of circularly permuted precursors indicates that interruptions in the sugar-phosphate backbone are not tolerated in the acceptor stem, in the T stem-loop, or between residues A-9 and G-10. Prokaryotic RNase P will function with a minihelix consisting of the acceptor stem connected directly to the T stem-loop. Eukaryotic RNase P cannot use such a minimal substrate unless a linker sequence is added in the gap where the D stem and anticodon stem-loop were deleted.
Resumo:
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.
Resumo:
This paper presents the results of a liquid–liquid equilibrium data correlation for 11 ternary systems which have not been previously fitted using the NRTL model or, when they have, the results presented in the literature are inconsistent with the experimental behavior of the system. These ternary systems include mixtures with one or two partially miscible pairs. During the correlation process, new restrictions were imposed on the values for the NRTL binary parameters to ensure correct prediction of the total or partial miscibility for the binary pairs involved. In addition, topological concepts related to the Gibbs stability test have been applied in order to validate the results in the whole range of compositions.
Resumo:
To solve problems in polymer fluid dynamics, one needs the equation of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (1) one can write a continuum expression for the stress tensor in terms of kinematic tensors, or (2) one can select a molecular model that represents the polymer molecule, and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. In this review, we restrict the discussion primarily to the simplest stress tensor expressions or “constitutive equations” containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. The virtue of studying the simplest models is that we can discover some general notions as to which types of empiricisms or which types of molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows. These are the flows that are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.