935 resultados para Turkish language--Composition and exercises
Resumo:
Site 598 sediments were analyzed to determine the factors controlling the rare earth element (REE) geochemistry of the hydrothermal component. Site 598 provides an ideal sample suite for this purpose. Samples are lithologically "simple," primarily consisting of a hydrothermal component and biogenous carbonates. Also, the composition of the hydrothermal component appears unchanged through time or space, and the site appears to have undergone minimal diagenetic alteration. The shale-normalized REE patterns are similar to the pattern of seawater, varying only in absolute REE content. The REE content increases with distance from the paleorise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Results presented are consistent with the following model: the source mechanism for the REE content of hydrothermal sediments is scavenging by Fe oxyhydroxides from seawater. With prolonged exposure to seawater resulting from transport far from the injection point and/or long residence at the seawatersediment interface, the absolute REE content of hydrothermal sediments increases and becomes more like seawater.
Resumo:
X-ray diffraction analyses of the clay-sized fraction of sediments from the Nankai Trough and Shikoku Basin (Sites 1173, 1174, and 1177 of the Ocean Drilling Program) reveal spatial and temporal trends in clay minerals and diagenesis. More detrital smectite was transported into the Shikoku Basin during the early-middle Miocene than what we observe today, and smectite input decreased progressively through the late Miocene and Pliocene. Volcanic ash has been altered to dioctahedral smectite in the upper Shikoku Basin facies at Site 1173; the ash alteration front shifts upsection to the outer trench-wedge facies at Site 1174. At greater depths (lower Shikoku Basin facies), smectite alters to illite/smectite mixed-layer clay, but reaction progress is incomplete. Using ambient geothermal conditions, a kinetic model overpredicts the amount of illite in illite/smectite clays by 15%-20% at Site 1174. Numerical simulations come closer to observations if the concentration of potassium in pore water is reduced or the time of burial is shortened. Model results match X-ray diffraction results fairly well at Site 1173. The geothermal gradient at Site 1177 is substantially lower than at Sites 1173 and 1174; consequently, volcanic ash alters to smectite in lower Shikoku Basin deposits but smectite-illite diagenesis has not started. The absolute abundance of smectite in mudstones from Site 1177 is sufficient (30-60 wt%) to influence the strata's shear strength and hydrogeology as they subduct along the Ashizuri Transect.
Resumo:
Results of direct geological and geochemical observations of the modern Rainbow hydrothermal field (Mid-Atlantic Ridge, 36°14'N; 33°54'W) carried out from the deep-sea manned Mir submersibles during Cruises 41 and 42 of the R/V Akademik Mstislav Keldysh in 1998-1999 and data of laboratory studies of collected samples are under consideration in the paper. The field lacks neovolcanic rocks and the axial part of the rift is filled in with a serpentinite protrusion. In this field there occur metalliferous sediments, as well as active and relict sulfide edifices composed of sulfide minerals; pyrrhotite, chalcopyrite, isocubanite, sphalerite, marcasite, pyrite, bornite, chalcosine, digenite, magnetite, anhydrite, rare troilite, wurtzite, millerite, and pentlandite have been determined. Sulfide ores are characterized by concentric-zoned textures. During in situ measurements during 35 minutes temperature of hydrothermal fluids was varying within a range from 250 to 350°C. Calculated chemical and isotopic composition of hydrothermal fluid shows elevated concentrations of Cl, Ni, Co, CH4, and H2. Values of d34S of H2S range from +2.4 to +3.1 per mil, of d13C of CH4 from -15.2 to -11.2 per mil, and d13C of CO2 from +1.0 to -4.0 per mil. Fluid inclusions are homogenized at temperatures from 140 to 360°C, whereas salinity of the fluid varies from 4.2 to 8.5 wt %. d34S values of sulfides range from +1.3 to +12.5 per mil. 3He/4He ratio in mineral-forming fluid contained in the fluid inclusions from sulfides of the Rainbow field varies from 0.00000374 to 0.0000101. It is shown that hydrothermal activity in the area continues approximately during 100 ka. It is assumed that the fluid and sulfide edifices contain components from the upper mantle. A hypothesis of phase separation of a supercritical fluid that results in formation of brines is proposed. Hydrothermal activity is related to the tectonic, not volcanic, phase of the Mid-Atlantic Ridge evolution.
Resumo:
The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.
Resumo:
Altogether 513 samples from sediments of Cretaceous to Pleistocene age from DSDP Legs 56 and 57 were examined by x-ray methods. The main constituents are clay minerals, quartz, feldspar, opaline silica, and volcanic glass. The sediment composition reflects the position of the sites in relation to the main source area, the Japanese Island Arc. For example, relatively coarse-grained material rich in quartz and feldspar was deposited closest to the islands, whereas finer-grained material rich in clay minerals (mainly smectite and illite, with lesser amounts of kaolinite and chlorite) was deposited farther seaward. Vertical fluctuations in the composition of the sediments show the same trend in all sites and are caused mainly by a fluctuating contribution of biogenic silica with time. A trend reversal in the chlorite/kaolinite ratio at Site 438 supports the conclusion that the subsidence of the Oyashio ancient landmass took place during the middle Miocene. That ratio also indicates a northwest drift in the position of Site 436 by sea floor spreading. Oscillations of the illite/smectite ratio during the Pleistocene at Site 436 show the variations of climate during this period. During early diagenesis potassium is fixed in smectite. With increasing depth of burial a smectite-illite mixed layer is formed, with increasing illite layering. At Sites 434, 440, and 441, stepwise changes confirm intensive tectonic process at the midslope terrace and the lower inner slope of the Japan Trench.
Resumo:
Results of geochemical studies of suspended matter from the water mass over the hydrothermal field at 9°50'N on the East Pacific Rise are reported. The suspended matter was sampled in background waters, in the buoyant plume, and in the near-bottom waters. Contents of Si, Al, P, Corg, Fe, Mn, Cu, Zn, Ni, Co, As, Cr, Cd, Pb, Ag, and Hg were determined. No definite correlations were found between the elements in the background waters. Many of the chemical elements correlated with Fe and associated with its oxyhydroxides in the buoyant plume. In the near-bottom waters trace elements are associated with Fe, Zn, and Cu (probably, with their sulfides formed during mixing of hydrothermal fluids with seawater). Chemical composition of sediment matter precipitated in a sediment trap was similar to the near-bottom suspended matter.
Resumo:
Gamma-spectrometric analysis was used for six sediment cores from the area occupied by metalliferous sediments in the Southeast Pacific. In five of these cores vertical distribution curves of 230Th enabled positions of equilibrium points to be determined and sediments to be dated. The ionium curve was normalized for one core. Vertical distribution of 230Th in metalliferous sediments resembles its distribution in normal ocean-floor sediments beyond the area of influence of active ridges. Sedimentation rates lay within the range 0.7-12.3 mm/ky.
Resumo:
Phase equilibria simulations were performed on naturally quenched basaltic glasses to determine crystallization conditions prior to eruption of magmas at the Mid-Atlantic Ridge (MAR) east of Ascension Island (7°11°S).The results indicate that midocean ridge basalt (MORB) magmas beneath different segments of the MAR have crystallized over a wide range of pressures (100-900MPa). However, each segment seems to have a specific crystallization history. Nearly isobaric crystallization conditions (100-300MPa) were obtained for the geochemically enriched MORB magmas of the central segments, whereas normal (N)-MORB magmas of the bounding segments are characterized by polybaric crystallization conditions (200-900MPa). In addition, our results demonstrate close to anhydrous crystallization conditions of N-MORBs, whereas geochemically enriched MORBs were successfully modeled in the presence of 0.4-1wt% H2O in the parental melts.These estimates are in agreement with direct (Fourier transform IR) measurements of H2O abundances in basaltic glasses and melt inclusions for selected samples. Water contents determined in the parental melts are in the range 0.04-0.09 and 0.30-0.55 wt% H2O for depleted and enriched MORBs, respectively. Our results are in general agreement (within ±200MPa) with previous approaches used to evaluate pressure estimates in MORB. However, the determination of pre-eruptive conditions of MORBs, including temperature and water content in addition to pressure, requires the improvement of magma crystallization models to simulate liquid lines of descent in the presence of small amounts of water. KEY WORDS: MORB; Mid-Atlantic Ridge; depth of crystallization; water abundances; phase equilibria calculations; cotectic crystallization; pressure estimates; polybaric fractionation
Resumo:
Partial pressure of CO2 (pCO2) and iron availability in seawater show corresponding changes due to biological and anthropogenic activities. The simultaneous change in these factors precludes an understanding of their independent effects on the ecophysiology of phytoplankton. In addition, there is a lack of data regarding the interactive effects of these factors on phytoplankton cellular stoichiometry, which is a key driving factor for the biogeochemical cycling of oceanic nutrients. Here, we investigated the effects of pCO2 and iron availability on the elemental composition (C, N, P, and Si) of the diatom Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle by dilute batch cultures under 4 pCO2 (~200, ~380, ~600, and ~800 µatm) and five dissolved inorganic iron (Fe'; ~5, ~10, ~20, ~50, and ~100 pmol /L) conditions. Our experimental procedure successfully overcame the problems associated with simultaneous changes in pCO2 and Fe' by independently manipulating carbonate chemistry and iron speciation, which allowed us to evaluate the individual effects of pCO2 and iron availability. We found that the C:N ratio decreased significantly only with an increase in Fe', whereas the C:P ratio increased significantly only with an increase in pCO2. Both Si:C and Si:N ratios decreased with increasing pCO2 and Fe'. Our results indicate that changes in pCO2 and iron availability could influence the biogeochemical cycling of nutrients in future oceans with high- CO2 levels, and, similarly, during the time course of phytoplankton blooms. Moreover, pCO2 and iron availability may also have affected oceanic nutrient biogeochemistry in the past, as these conditions have changed markedly over the Earth's history.
Resumo:
CaCO3, Corg, and biogenic SiO2 were measured in Eocene equatorial Pacific sediments from Sites 1218 and 1219, and bulk oxygen and carbon isotopes were measured on selected intervals from Site 1219. These data delineate a series of CaCO3 events that first appeared at ~48 Ma and continued to the Eocene/Oligocene boundary. Each event lasted 1-2 m.y. and is separated from the next by a low CaCO3 interval of a similar time span. The largest of these carbonate accumulation events (CAE-3) is in Magnetochron 18. It began at ~42.2 Ma, lasted until ~40.3 Ma, and was marked by higher than average productivity. The end of CAE-3 was abrupt and was associated with a large-scale carbon transfer to the oceans prior to warming of high-latitude regions. Changes in carbonate compensation depth associated with CAE excursions were small in the early part of the middle Eocene but increased to as much as 800 m by the late middle Eocene before decreasing into the late Eocene. Oxygen isotope data indicate that the carbonate events are associated with cooling conditions and may mark small glaciations in the Eocene.