984 resultados para Turbulent Fluxes
Resumo:
DNS data of a laboratory-scale turbulent lifted hydrogen jet flame has been analyzed to show that this flame has mixed mode combustion not only at the flame base but also in downstream locations. The mixed mode combustion is observed in instantaneous structures as in earlier studies and in averaged structure, in which the predominant mode is found to be premixed combustion with varying equivalence ratio. The non-premixed combustion in the averaged structure is observed only in a narrow region at the edge of the jet shear layer. The analyzes of flame stretch show large probability for negative flame stretch leading to negative surface averaged flame stretch. The displacement speed-curvature correlation is observed to be negative contributing to the negative flame stretch and partial premixing resulting from jet entrainment acts to reduce the negative correlation. The contribution of turbulent straining to the flame stretch is observed to be negative when the scalar gradient aligns with the most extensive principal strain rate. The physics behind the negative flame stretch resulting from turbulent straining is discussed and elucidated through a simple analysis of the flame surface density transport equation. © 2014 Copyright Taylor and Francis Group, LLC.
Resumo:
The flame surface density approach to the modeling of premixed turbulent combustion is well established in the context of Reynolds-averaged simulations. For the future, it is necessary to consider large-eddy simulation (LES), which is likely to offer major advantages in terms of physical accuracy, particularly for unsteady combustion problems. LES relies on spatial filtering for the removal of unresolved phenomena whose characteristic length scales are smaller than the computational grid scale. Thus, there is a need for soundly based physical modeling at the subgrid scales. The aim of this paper is to explore the usefulness of the flame surface density concept as a basis for LES modeling of premixed turbulent combustion. A transport equation for the filtered flame surface density is presented, and models are proposed for unclosed terms. Comparison with Reynolds-averaged modeling is shown to reveal some interesting similarities and differences. These were exploited together with known physics and statistical results from experiment and from direct numerical stimulation in order to gain insight and refine the modeling. The model has been implemented in a combustion LES code together with standard models for scalar and momentum transport. Computational results were obtained for a simple three-dimensional flame propagation test problem, and the relative importance of contributing terms in the modeled equation for flame surface density was assessed. Straining and curvature are shown to have a major influence at both the resolved and subgrid levels.
Resumo:
This paper looks at active control of the normal shock wave/turbulent boundary layer interaction (SBLI) using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and control the rate of mass transfer. © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
The effect of streamwise slots on the interaction of a normal shock wave / turbulent boundary layer has been investigated experimentally at a Mach number of 1.3. The surface pressure distribution for the controlled interaction was found to be significantly smeared, featuring a distinct plateau. This was due to a change in shock structure from a typical unseparated normal shock wave boundary layer interaction to a large bifurcated Lambda type shock pattern. Boundary layer velocity measurements downstream of the slots revealed a strong spanwise variation of boundary layer properties whereas the modified shock structure was relatively twodimensional. Oil flow visualisation indicated that in the presence of slots the boundary layer surface flow was highly three dimensional and confirmed that the effect of slots was mainly due to suction and blowing similar to that for passive control with uniform surface ventilation. Three hole probe measurements confirmed that the boundary layer was three dimensional and that the slots introduced vortical motion into the flowfield. Results indicate that when applied to an aerofoil, the control device has the potential to reduce wave drag while incurring only small viscous penalties. The introduction of streamwise vorticity may also be beneficial to delay trailing edge separation and the device is thought to be capable of postponing buffet onset. © 2001 by A N Smith.
Resumo:
Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air-water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62 +/- 0.36, 0.70 +/- 0.36, and 1.31 +/- 0.57 mg m(-2) h(-1), respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8 +/- 20.4, 52.2 +/- 14.1 and 3.6 +/- 26.8 mg m(-2) h(-1), respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air-water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
© 2014 Cambridge University Press. This paper describes a detailed experimental study using hot-wire anemometry of the laminar-turbulent transition region of a rotating-disk boundary-layer flow without any imposed excitation of the boundary layer. The measured data are separated into stationary and unsteady disturbance fields in order to elaborate on the roles that the stationary and the travelling modes have in the transition process. We show the onset of nonlinearity consistently at Reynolds numbers, R, of ∼ 510, i.e. at the onset of Lingwood's (J. Fluid Mech., vol. 299, 1995, pp. 17-33) local absolute instability, and the growth of stationary vortices saturates at a Reynolds number of ∼ 550. The nonlinear saturation and subsequent turbulent breakdown of individual stationary vortices independently of their amplitudes, which vary azimuthally, seem to be determined by well-defined Reynolds numbers. We identify unstable travelling disturbances in our power spectra, which continue to grow, saturating at around R=585, whereupon turbulent breakdown of the boundary layer ensues. The nonlinear saturation amplitude of the total disturbance field is approximately constant for all considered cases, i.e. different rotation rates and edge Reynolds numbers. We also identify a travelling secondary instability. Our results suggest that it is the travelling disturbances that are fundamentally important to the transition to turbulence for a clean disk, rather than the stationary vortices. Here, the results appear to show a primary nonlinear steep-fronted (travelling) global mode at the boundary between the local convectively and absolutely unstable regions, which develops nonlinearly interacting with the stationary vortices and which saturates and is unstable to a secondary instability. This leads to a rapid transition to turbulence outward of the primary front from approximately R=565 to 590 and to a fully turbulent boundary layer above 650.
Resumo:
© 2014 Elsevier Masson SAS. All rights reserved. The turbulent boundary layer on a rotating disk is studied with the aim of giving a statistical description of the azimuthal velocity field and to compare it with the streamwise velocity of a turbulent two-dimensional flat-plate boundary layer. Determining the friction velocity accurately is particularly challenging and here this is done through direct measurement of the velocity distribution close to the rotating disk in the very thin viscous sublayer using hot-wire anemometry. Compared with other flow cases, the rotating-disk flow has the advantage that the highest relative velocity with respect to a stationary hot wire is at the wall itself, thereby limiting the effect of heat conduction to the wall from the hot-wire probe. Experimental results of mean, rms, skewness and flatness as well as spectral information are provided. Comparison with the two-dimensional boundary layer shows that turbulence statistics are similar in the inner region, although the rms-level is lower and the maximum spectral content is found at smaller wavelengths for the rotating case. These features both indicate that the outer flow structures are less influential in the inner region for the rotating case.
Resumo:
The statistical behaviours of the instantaneous scalar dissipation rate Nc of reaction progress variable c in turbulent premixed flames have been analysed based on three-dimensional direct numerical simulation data of freely propagating statistically planar flame and V-flame configurations with different turbulent Reynolds number Ret. The statistical behaviours of N c and different terms of its transport equation for planar and V-flames are found to be qualitatively similar. The mean contribution of the density-variation term T1 is positive, whereas the molecular dissipation term (-D2) acts as a leading order sink. The mean contribution of the strain rate term T2 is predominantly negative for the cases considered here. The mean reaction rate contribution T3 is positive (negative) towards the unburned (burned) gas side of the flame, whereas the mean contribution of the diffusivity gradient term (D) assumes negative (positive) values towards the unburned (burned) gas side. The local statistical behaviours of Nc, T1, T2, T 3, (-D2), and f(D) have been analysed in terms of their marginal probability density functions (pdfs) and their joint pdfs with local tangential strain rate aT and curvature km. Detailed physical explanations have been provided for the observed behaviour. © 2014 Y. Gao et al.
Resumo:
Up to now, there have been few studies in the annual fluxes of greenhouse gases in lakes of subtropical regions. The fluxes of methane (CH4) and carbon dioxide (CO2) across air-water interface were measured in a shallow, hypereutrophic, subtropical Lake Donghu (China) over a year cycle, using a static chamber technique. During the year, Lake Donghu emitted CH4 and CO2; the average flux of CH4 and CO2 was 23.3 +/- 18.6 and 332.3 +/- 160.1 mg m(-2) d(-1), respectively. The fluxes of CH4 and CO2 showed strong seasonal dynamics: CH4 emission rate was highest in summer, remaining low in other seasons, whereas CO2 was adsorbed from the atmosphere in spring and summer, but exhibited a large emission in winter. Annual carbon (C) budget across air-water interface in Lake Donghu was estimated to be 7.52 +/- 4.07 x 10(8) g. CH4 emission was correlated positively with net primary production (NPP) and temperature, whereas CO2 flux correlated negatively with NPP and temperature; however, there were no significant relationships between the fluxes of CH4 and CO2 and dissolved organic carbon, a significant difference from boreal lakes, indicating that phytoplankton rather than allochthonous matter regulated C dynamics across air-water interface of subtropical lake enriched nutrient content. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences. © 2014 Taylor & Francis.
Resumo:
The summer diel variation of methane (CH4) flux was investigated in a eutrophic, subtropical lake in China. The CH4 concentration was always supersaturated, and the emission rate ranged from 0.24 to 45.51 mg m(-2) h(-1). The diel variations of CH4 flux in June and August showed a single peak in early afternoon and a minimum in the morning, while the pattern varied irregularly in May. There was a moderate relationship between water and sediment temperature and CH4 emission rate in some months.
Resumo:
A model for off-wall boundary conditions for turbulent flow is investigated. The objective of such a model is to circumvent the need to resolve the buffer layer near the wall, by providing conditions in the logarithmic layer for the overlying flow. The model is based on the self-similarity of the flow at different heights in the logarithmic layer. It was first proposed by Mizuno and Jiménez (2013), imposing at the boundary plane a velocity field obtained on-the-fly from an overlying region. The key feature of the model was that the lengthscales of the field were rescaled to account for the self-similarity law. The model was successful at sustaining a turbulent logarithmic layer, but resulted in some disagreements in the flow statistics, compared to fully-resolved flows. These disagreements needed to be addressed for the model to be of practical application. In the present paper, a more refined, wavelength-dependent rescaling law is proposed, based on the wavelength-dependent dynamics in fully-resolved flows. Results for channel flow show that the new model eliminates the large artificial pressure fluctuations found in the previous one, and a better agreement is obtained in the bulk properties, the flow fluctuations, and their spectral distribution across the whole domain. © Published under licence by IOP Publishing Ltd.