958 resultados para Transcriptional coactivator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sox18 encodes a transcription factor known to be important for the development of blood vessels and hair follicles in mice. In order to study the functional conservation of this gene through evolution, we have isolated and characterized Sox18 in chickens. cSox18 shows a high degree of sequence homology to both the mouse and human orthologues, particularly in the high mobility group DNA-binding domain and to a lesser extent in the transcriptional activation domain. A region of unusually high sequence conservation at the C-terminus may represent a further, previously unrecognized functional domain. Both the chicken and human proteins appear to be truncated at the N-terminus relative to mouse SOX18. In situ hybridization analyses showed expression in the developing vasculature and feather follicles, consistent with reported expression in the mouse embryo. In addition, cSox18 mRNA was observed in the retina and claw beds. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we demonstrated that mutations in the Sry-related HMG box gene Sox18 underlie vascular and hair follicle defects in the mouse allelic mutants ragged (Ra) and RaJ. Ra mice display numerous anomalies in the homozygote including, oedema, peritoneal secretions, and are almost completely naked. Sox18 and the MADS box transcription factor, Mef2C, are expressed in developing endothelial cells. Null mutants in Sox18 and Mef2c display overlapping phenotypic abnormalities, hence, we investigated the relationship between these two DNA binding proteins. We report here the direct interaction between MEF2C and SOX18 proteins, and establish that these proteins are coexpressed in vivo in endothelial cell nuclei. MEF2C expression potentiates SOX18-mediated transcription in vivo and regulates the function of the SOX18 activation domain. Interestingly, MEF2C fails to interact or co-activate transcription with the Ra or RaJ mutant SOX18 proteins. These results suggest that MEF2C and SOX18 may be important partners directing the transcriptional regulation of vascular development. (C) 2001 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary metabolites synthesised by sessile invertebrates appear to play a role in creating and maintaining space on hard substrata by repelling competitors. In this study, we investigated the responses of the larvae of the ascidian Herdmania curvata to haliclonacyclamine A (HA), the major component of a suite of cytotoxic alkaloids extracted from the sponge Haliclona sp. 628. Both Haliclona sp. 628 and Herdmania curvata inhabit the crest and slope of Heron Island Reef. High rates of settlement were induced in competent H. curvata larvae by a range of concentrations of HA, all lower than that naturally occurring in the sponge. HA did not induce precompetent larvae to settle. Although early metamorphosis of HA-induced larvae was normal, larvae exposed to all but the lowest concentration of HA were developmentally arrested after completion of tail resorption, at about 4 h after the initiation of metamorphosis. These postlarvae underwent extensive cellular necrosis within 24 h. We also demonstrate that the addition of a transcriptional inhibitor, actinomycin D, to larvae also causes inhibition of metamorphosis after tail resorption is completed. Analyses of incorporation of radiolabelled nucleotides to measure levels of transcription during normal development and after the addition of the transcriptional inhibitor indicate that there is a significant burst of transcriptional activity just after tail resorption is completed. Despite inhibiting metamorphosis at the same stage as actinomycin D, HA increases initial rates of RNA synthesis after induction of metamorphosis in a manner similar to that observed in normal postlarvae until the onset of cellular necrosis. We conclude that HA initially induces H. curvata larvae to settle and progress through early metamorphosis possibly by engaging the same pathway as other artificial and environmental cues but subsequently inhibits completion of metamorphosis, resulting in death of the postlarvae. Since HA does not affect overall transcription rates, it appears to disrupt another important developmental process during early metamorphosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2 +/- 8.5 vs. 64.2 +/- 9.7 years; P = .0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (theta = 0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sonic Hedgehog is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. Disruption of the Hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. The identification of genes regulated by Hedgehog is crucial to understanding how disruption of this pathway leads to neoplastic transformation. We have used a Sonic Hedgehog (Shh) responsive mouse cell line, C3H/10T1/2, to provide a model system for hedgehog target gene discovery. Following activation of cell cultures with Shh, RNA was used to interrogate microarrays to investigate downstream transcriptional consequences of hedgehog stimulation. As a result 11 target genes have been identified, seven of which are induced (Thrombomodulin, GILZ, BF-2, Nr4a1, IGF2, PMP22, LASP1) and four of which are repressed (SFRP-1, SFRP-2, Mip1-gamma, Amh) by Shh. These targets have a diverse range of putative functions and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 This study has administered pirfenidone (5-methyl-l-phenyl-2-[1H]-pyridone) or amiloride to attenuate the remodelling and associated functional changes, especially an increased cardiac stiffness, in DOCA-salt hypertensive rats. 2 In control rats, the elimination half-life of pirfenidone following a single intravenous dose of 200 mg kg(-1) was 37 min while oral bioavailability at this dose was 25.7%. Plasma pirfenidone concentrations in control rats averaged 1.9 +/- 0.1 mug ml(-1) over 24 It after 14 days' administration as a 0.4% mixture in food. 3 Pirfenidone (approximately 250-300 mg kg(-1) day(-1) as 0.4% in food) and amiloride (I mg kg-1 day(-1) sc) were administered for 2 weeks starting 2 weeks post-surgery. Pirfenidone but not amiloride attenuated ventricular hypertrophy (2.69 +/- 0.09, UNX 2.01 +/- 0.05. DOCA-salt 3.11 +/- 0.09 mg kg(-1) body wt) without lowering systolic blood pressure. 4 Collagen deposition was significantly increased in the interstitium after 2 weeks and further increased with scarring of the left ventricle after 4 weeks; pirfenidone and amiloride reversed the increases and prevented further increases. This accumulation of collagen was accompanied by an increase in diastolic stiffness constant; both amiloride and pirfenidone, reversed this increase. 5 Noradrenaline potency (positive chronotropy) was decreased in right atria (neg log EC50: control 6.92 +/- 0.06; DOCA-salt 6.64 +/- 0.08); pirfenidone but not amiloride reversed this change. Noradrenaline was a more potent vasoconstrictor in thoracic aortic rings (neg log EC50: control 6.91 +/- 0.10; DOCA-salt 7.90 +/- 0.07); pirfenidone treatment did not change noradrenaline potency. 6 Thus, pirfenidone and amiloride reverse and prevent cardiac remodelling and the increased cardiac stiffness without reversing the increased vascular responses to noradrenaline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The renal sodium-sulfate cotransporter, NaSi-1, a protein implicated to control serum sulfate levels, has been shown to be regulated in vivo by 1,25-dihydroxyvitamin D-3 (1,25-(OH)(2)D-3) and tri-iodothyronine (T-3). Recently, we cloned the mouse NaSi-1 gene (Nas1) and in the present study identified a 1,25-(OH)(2)D-3- and T-3-responsive element located within the Nas1 promoter. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3-responsive element (IR0 T3RE) at -436 to -425 which conferred 1,25(OH)(2)D-3 and T3 responsiveness, respectively. In summary, we have identified responsive elements that mediate the enhanced transcription of Nas1 by 1,25-(OH)(2)D-3 and T-3, and these mechanisms may provide important clues to the physiological control of sulfate homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular events that drive the initiation and progression of ovarian adenocarcinoma are not well defined. We have investigated changes in gene expression in ovarian cancer cell lines compared to an immortalized human ovarian surface epithelial cell line (HOSE) using a cDNA array. We identified 17 genes that were under-expressed and 10 genes that were over-expressed in the cell lines compared to the HOSE cells. One of the genes under-expressed in the ovarian cancer cell lines, Id3, a transcriptional inactivator, was selected for further investigation. Id3 mRNA was expressed at reduced levels in 6 out of 9 ovarian cancer cell lines compared to the HOSE cells while at the protein level, all 7 ovarian cancer cell lines examined expressed the Id3 protein at greatly reduced levels. Expression of Id3 mRNA was also examined in primary ovarian tumours and was found in only 12/38 (32%) cases. A search was conducted far mutations of Id3 in primary ovarian cancers using single stranded conformation polymorphism (SSCP) analysis. Only one nucleotide substitution, present also in the corresponding constitutional DNA, was found in 94 ovarian tumours. Furthermore no association was found between LOH at 1p36 and lack of expression of Id3. These data suggest that Id3 is not the target of LOH at 1p36. (C) 2001 Cancer Research Campaign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ragged (Ra) spontaneous mouse mutant is characterised by abnormalities in its coat and cardiovascular system. Four alleles are known and we have previously described mutations in the transcription factor gene Sox18 in the Ra and Ra-J alleles. We report here Sox18 mutations in the remaining two ragged alleles, opossum (Ra-op) and ragged-like (Ragl). The single-base deletions cause a C-terminal frameshift, abolishing transcriptional trans-activation and impairing interaction with the partner protein MEF2C. The nature of these mutations, together with the near-normal phenotype of Sox18-null mice, suggests that the ragged mutant SOX18 proteins act in a dominant-negative fashion. The four ragged mutants represent an allelic series that reveal SOX18 structure-function relationships and implicate related SOX proteins in cardiovascular and hair follicle development. (C) 2003 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Wilms' tumour suppressor gene (WT1) encodes a zinc finger-containing nuclear protein essential for kidney and urogenital development. Initially considered a transcription factor, there is mounting evidence that WT1 has a role in post-transcriptional processing. Using the interspecies heterokaryon assay, we have demonstrated that WT1 can undergo nucleocytoplasmic shuttling. We have also mapped the region responsible for nuclear export to residues 182-324. Our data add further complexity to the role of WT1 in trancriptional and post-transcriptional regulation. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the derivation of two new lines of transgenic mice that express Cre recombinase under the control of tyrosinase transcriptional elements. To determine the suitability of the Tyrosinase-Cre transgene for tissue-specific gene ablation studies, a fate map of Cre expression domains was determined using the Z/AP reporter strain. It was shown that Cre-expressing cells contribute to a wide array of neural crest and neuroepithelial-derived lineages. The melanocytes of the harderian gland and eye choroid, sympathetic cephalic ganglia, leptomeninges of the telencephalon, as well as cranial nerves (V), (VII), and (IX) are derived either fully or partly from Cre-expressing cephalic crest. The cells contributing to the cranial nerves were the first to exhibit Cre expression at E10.5 as they were migrating into the branchial arches. The melanocytes, chromaffin cells of the adrenal medulla, and dorsal root ganglia are derived from trunk neural crest that either express Cre or were derived from Cre-expressing precursors. An array of brain tissue including the basal forebrain, hippocampus, olfactory bulb, and the granule cell layer of the lateral cerebellum, as well as the retinal pigmented epithelium and glia of the optic nerve originate from Cre-expressing neuroepithelial cells. (C) 2003 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show here that nerve growth factor (NGF), the canonical neurotrophic factor, is synthesized and released by breast cancer cells. High levels of NGF transcript and protein were detected in breast cancer cells by reverse transcription-PCR, Western blotting, ELISA assay and immunohistochemistry. Conversely, NGF production could not be detected in normal breast epithelial cells at either the transcriptional or protein level. Confocal analysis indicated the presence of NGF within classical secretion vesicles. Breast cancer cell-produced NGF was biologically active, as demonstrated by its ability to induce the neuronal differentiation of embryonic neural precursor cells. Importantly, the constitutive growth of breast cancer cells was strongly inhibited by either NGF-neutralizing antibodies or K-252a, a pharmacological inhibitor of NGF receptor TrkA, indicating the existence of an NGF autocrine loop. Together, our data demonstrate the physiological relevance of NGF in breast cancer and its potential interest as a marker and therapeutic target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Peroxisome proliferator activated receptor gamma (PPARgamma) is a ligand-activated transcription factor known to be central to both adipose tissue development and insulin action. Growth of adipose tissue requires differentiation of preadipocytes with acquisition of specific cellular functions including insulin sensitivity, leptin secretion and the capacity to store triglyceride. Dietary fatty acids and members of the thiazolidinedione class of compounds have been reported to influence adipogenesis at the transcriptional level. Here, we compare the effects of a dietary fatty acid, linoleic acid, and a thiazolidinedione, rosiglitazone, on biochemical and functional aspects of human preadipocyte differentiation in vitro . Materials and methods Human omental and subcutaneous preadipocytes were subcultured 2-3 times and subsequently differentiated for 21 days in the presence of either linoleic acid or rosiglitazone. Differentiation was assessed using a number of biochemical and functional parameters. Results Omental and subcutaneous preadipocytes differentiated in the presence of linoleic acid showed marked cytoplasmic triacylglycerol accumulation however, no biochemical markers of differentiation (LPL expression, G3PDH gene expression and enzyme activity and leptin expression or secretion) were detected. In contrast, treatment of these cells with rosiglitazone induced full biochemical differentiation as judged by all markers assessed, despite comparatively little lipid accumulation. The rosiglitazone effects were subcutaneous depot-specific. Cells treated with linoleic acid showed decreased glucose uptake cf rosiglitazone-treated cells. A luciferase reporter assay demonstrated that rosiglitazone potently activates h-peroxisome proliferator activated receptor gamma while linoleic acid had no effect. Conclusions These studies demonstrate that (a) human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation; (b) while omental preadipocytes are refractory to biochemical differentiation in vitro , they are able to accumulate triacylglycerol; and (c) rosiglitazone and linoleic acid may exert their effects via different biochemical pathways.