956 resultados para Transcriptase-PCR assay
Resumo:
以天蓝喇叭虫(Stentor coeruleus)为研究对象,探索了单细胞单基因PCR扩增及单细胞全基因组PCR扩增技术在原生动物中的应用.经过不断探索和优化条件后,试验取得了理想的结果.在40例单细胞单基因(SSU rDNA基因全序列)PCR的一次性扩增中,新鲜细胞和经过中性红染色的细胞都获得了100%的成功率,室温下酒精(95%)保存一周的细胞获得了82.5%的成功率.在单细胞全基因组PCR扩增中,采用高效高保真的phi29DNA聚合酶结合随机引物(Random Primer)进行扩增,获得了丰富且质
Resumo:
选择天蓝喇叭虫(Stentor coeruleus)作为研究对象,对武汉市南湖、月湖、关桥3个水体共5个样点天蓝喇叭虫(S.coeruleus)样本的总DNA进行随机扩增多态DNA聚类分析,以检测各个样本的遗传相似性和趋异程度,借以评估样本间的遗传变异度。结果如下:(1)从98条随机引物中筛选12条引物共扩增出89条大小为100~1500bp的清晰条带,平均每条引物扩增出7.4条片段。(2)用Rapdistance1.04分析显示,不同样点样本之间存在着一定的变异,其遗传距离在0.076~0.416之间。
Resumo:
传统鉴定藻种的方法主要是通过形态学观察的方法加以判断。蓝藻在自然条件和人工培养过程中 ,其形态、代谢能力等都可能发生变化 ,同时该过程需要的时间长 ,难以区分种或种以下的分类、单位 ,亦难以在水华暴发早期阶段准确鉴定。本文利用rDNA通用引物扩增 ,表明在 5 0 μL的反应体系中加入 2 0个鱼腥藻细胞能扩增出目的条带 ;对已知的鱼腥藻PC基因的分析设计引物 ,在BSA浓度为 0 2 %— 1% (w/v)下 ,全细胞扩增出实验室保存的四种鱼腥藻的部分PC以及PC IGS序列 ,序列分析结果表明PC I
Resumo:
从鲤鱼3个亚种(Cyprinus carpio carpio,Cyprinus carpio haematopterus和Cyprinus carpiorubrofuscus)中选出具代表性的品系共10个,运用PCR方法,扩增出2.4 kb的mtDNA ND5/6区段.共用9种限制性内切酶进行酶切分析,结果表明,每个亚种拥有一种单倍型,有4种限制性内切酶(Dde I,Hae III,Taq I和Mbo I)酶切后产生了能将3个亚种区分开来的诊断性限制性酶切位点.可利用其作为鉴定3个亚种的遗传标记和遗传育种
Resumo:
应用RT -PCR方法 ,通过用不同浓度的甲基汞对Hep2B细胞株进行不同时间长短的处理 ,检测其调钙质的mRNA表达水平 ,发现微量的甲基汞处理就可以引起细胞株细胞损伤 ,同时抑制调钙质mRNA的表达 ,进一步证实了在肝脏损伤的病理状态下调钙质基因的表达减少 ,从而为检测环境中甲基汞的含量提供了一个可能的分子生物学手段 .
Resumo:
国家自然科学基金(项目编号:39730290)
Resumo:
特异引物对(TOX 1P/1F;TOX 2P/2F)用于检测微囊藻毒素合成酶基因mcyB片段在38种水华蓝藻中的分布情况。结果显示,所有能产生微囊藻毒素的微囊藻都有特异扩增条带,非产毒株则没有。几种常规的毒性检测方法验证了PCR方法所获结果的准确性。本研究发展了以全细胞PCR法检测mcyB片断,说明全细胞PCR检测法适用于不同来源的蓝藻材料。结果证明以DNA为基础鉴别产毒和非产毒微囊藻及其他水华蓝藻的方法是可行和实用的。
Resumo:
针对集胞藻PCC6803的1927个待定编码基因进行了两侧序列的PCR扩增。4个亚株基因组在。sll0267-sll0268-sll0269区域的 PCR扩增产物与 Kazusa DNA数据存在差异。以叶绿素合成基因chlH和chlL为例,显示三片段连接PCR产物可有效用于集胞藻6803基因组定向插入失活。
Resumo:
应用RAPD-PCR的方法,选用24个随机引物,分析来自不同地区的7株微囊藻的基因组多态性.结果显示,Microcystis.viridis及M.wesenbergii明显与M.aeruginosa区分开.M.aeruginosa分为两个可视为不同种的异源分类单位.作为对照的Anabaenasp.7120与其他微囊藻株表现出完全不同的基因型及更远的遗传距离.此项研究表明,以基因型而不是表现型为基础,分析蓝藻种内及种间区别是可能的.因此,为解决蓝藻分类问题,特别是在种和属的水平上,提供了重要的线索.结合正在
Resumo:
应用RAPD-PCR的方法,选用24个随机引物,分析来自不同地区的7株微囊藻的基因组多态性。结果显示,Microcystis.viridis及M.wesenbergii明显与M.aeruginosa区分开。M.aeruginosa分为两个可视为不同种的异源分类单位。作为对照的Anabaena sp.7120与其他微囊藻株表现出完全不同的基因型及更远的遗传距离。 此项研究表明,以基因型而不是表现型为基础,分析蓝藻种内及种间区别是可能的。因此,为解决蓝藻分类问题,特别是在种和属的水平上,提供了重要的线索。结合
Resumo:
PCR技术在环境生物学上的应用邱东茹,吴振斌(中国科学院水生生物研究所武汉430072)水是许多疾病的传播途径之一,为监测水环境、水处理系统和供水系统的卫生学质量,需要对水中的病原菌和病毒作检测,由于直接检查水中各种病原微生物方法复杂,如有些细菌很难...
PCR-DGGE Fingerprinting Analysis of Plankton Communities and Its Relationship to Lake Trophic Status
Resumo:
Plankton communities in eight lakes of different trophic status near Yangtze, China were characterized by using denatured gradient gel electrophoresis (DGGE). Various water quality parameters were also measured at each collection site. Following extraction of DNA from plankton communities, 16S rRNA and 18S rRNA genes were amplified with specific primers for prokaryotes and eukaryotes, respectively; DNA profiles were developed by DGGE. The plankton community of each lake had its own distinct DNA profile. The total number of bands identified at 34 sampling stations ranged from 37 to 111. Both prokaryotes and eukaryotes displayed complex fingerprints composed of a large number of bands: 16 to 59 bands were obtained with the prokaryotic primer set; 21 to 52 bands for the eukaryotic primer set. The DGGE-patterns were analyzed in relation to water quality parameters by canonical correspondence analysis (CCA). Temperature, pH, alkalinity, and the concentration of COD, TP and TN were strongly correlated with the DGGE patterns. The parameters that demonstrated a strong correlation to the DGGE fingerprints of the plankton community differed among lakes, suggesting that differences in the DGGE fingerprints were due mainly to lake trophic status. Results of the present study suggest that PCR-DGGE fingerprinting is an effective and precise method of identifying changes to plankton community composition, and therefore could be a useful ecological tool for monitoring the response of aquatic ecosystems to environmental perturbations.
Resumo:
An essential for respiration and viability (ERV1) homologue, 88R, was cloned and characterized from Rana grylio virus (RGV). Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed a highly conserved motif shared by all ERV1 family proteins: Cys-X-X-Cys. RT-PCR and western blot analysis revealed that 88R begins to transcribe and translate at 6 h postinfection (p.i.) and remains detectable at 48 h p.i. during RGV infection course. Furthermore, using drug inhibition analysis by a de novo protein synthesis inhibitor and a viral DNA replication inhibitor, RGV 88R was classified as a late (L) viral gene during the in vitro infection. 88R-EGFP fusion protein was observed in both the cytoplasm and nucleus of pEGFP-N3-88R transfected EPC cells. Although result of immunofluorescence is similar, 88R protein was not detected in viromatrix. Moreover, function of RGV 88R on virus replication were evaluated by RNAi assay. Nevertheless, effect of knockdown of RGV 88R expression on virus replication was not detected in cultured fish cell lines. Collectively, current data indicate that RGV 88R was a late gene of iridovirus encoding protein that distributed both the cytoplasm and nucleus.
Resumo:
To explore the relationships between community composition and the environment in a reservoir ecosystem, plankton communities from the Three Gorges Reservoir Region were studied by PCR-denaturing gradient gel electrophoresis fingerprinting. Bacterial and eukaryotic operational taxonomic units (OTUs), generated by DGGE analysis of the PCR-amplified 16S and 18S rRNA genes, were used as surrogates for the dominant "biodiversity units". OTU composition among the sites was heterogeneous; 46.7% of the total bacteria] OTUs (45) and 64.1% of the eukaryotic OTUs (39) were identified in less than half of the sampling sites. Unweighted pair group method with arithmetic averages (UPGMA) clustering of the OTUs suggested that the plankton communities in the Xiangxi Rive sites were not always significantly different from those from the Yangtze River sites, despite clear differences in their environmental characterizations. Canonical correspondence analysis (CCA) was applied to further investigate the relationships between OTU composition and the environmental factors. The first two CCA ordination axes suggested that the bacterial community composition was primarily correlated with the variables of NO3--N, dissolved oxygen (DO), and SiO32--Si, whereas, the eukaryotic community was mainly correlated with the concentrations of DO, PO43--P, and SiO32--Si.
Resumo:
m Background: Cross-species nuclear transfer has been shown to be a potent approach to retain the genetic viability of a certain species near extinction. However, most embryos produced by cross-species nuclear transfer were compromised because that they were unable to develop to later stages. Gene expression analysis of cross-species cloned embryos will yield new insights into the regulatory mechanisms involved in cross-species nuclear transfer and embryonic development. Results: A novel gene, K31, was identified as an up-regulated gene in fish cross-subfamily cloned embryos using SSH approach and RACE method. K31 complete cDNA sequence is 1106 base pairs (bp) in length, with a 342 bp open reading frame (ORF) encoding a putative protein of 113 amino acids (aa). Comparative analysis revealed no homologous known gene in zebrafish and other species database. K31 protein contains a putative transmembrane helix and five putative phosphorylation sites but without a signal peptide. Expression pattern analysis by real time RT-PCR and whole-mount in situ hybridization (WISH) shows that it has the characteristics of constitutively expressed gene. Sub-cellular localization assay shows that K31 protein can not penetrate the nuclei. Interestingly, over-expression of K31 gene can cause lethality in the epithelioma papulosum cyprinid (EPC) cells in cell culture, which gave hint to the inefficient reprogramming events occurred in cloned embryos. Conclusion: Taken together, our findings indicated that K31 gene is a novel gene differentially expressed in fish cross-subfamily cloned embryos and over-expression of K31 gene can cause lethality of cultured fish cells. To our knowledge, this is the first report on the determination of novel genes involved in nucleo-cytoplasmic interaction of fish cross-subfamily cloned embryos.