960 resultados para Tip-enhanced Raman scattering
Resumo:
The TA2 phonon dispersion curves of Ni-Mn-Ga alloys with different compositions which transform to different martensitic structures have been measured over a broad temperature range covering both paramagnetic and ferromagnetic phases. The branches show an anomaly (dip) at a wave number that depends on the particular martensitic structure, and there is softening of these anomalous phonons with decreasing temperature. This softening is enhanced below the Curie point, as a consequence of spin-phonon coupling. This effect is stronger for systems with higher electronic concentration.
Resumo:
We explain the empirical linear relations between the triplet scattering length, or the asymptotic normalization constant, and the deuteron matter radius using the effective range expansion in a manner similar to a recent paper by Bhaduri et al. We emphasize the corrections due to the finite force range and to shape dependence. The discrepancy between the experimental values and the empirical line shows the need for a larger value of the wound extension, a parameter which we introduce here. Short-distance nonlocality of the n-p interaction is a plausible explanation for the discrepancy.
Resumo:
Results for elastic electron scattering by nuclei, calculated with charge densities of Skyrme forces and covariant effective Lagrangians that accurately describe nuclear ground states, are compared against experiment in stable isotopes. Dirac partial-wave calculations are performed with an adapted version of the ELSEPA package. Motivated by the fact that studies of electron scattering off exotic nuclei are intended in future facilities in the commissioned GSI and RIKEN upgrades, we survey the theoretical predictions from neutron-deficient to neutron-rich isotopes in the tin and calcium isotopic chains. The charge densities of a covariant interaction that describes the low-energy electromagnetic structure of the nucleon within the Lagrangian of the theory are used to this end. The study is restricted to medium- and heavy-mass nuclei because the charge densities are computed in mean-field approach. Because the experimental analysis of scattering data commonly involves parameterized charge densities, as a surrogate exercise for the yet unexplored exotic nuclei, we fit our calculated mean-field densities with Helm model distributions. This procedure turns out to be helpful to study the neutron-number variation of the scattering observables and allows us to identify correlations of potential interest among some of these observables within the isotopic chains.
Resumo:
Introduction of the recombinant cosmid pME3090 into Pseudomonas fluorescens strain CHAO, a good biocontrol agent of various diseases caused by soilborne pathogens, increased three- to five-fold the production of the antibiotic metabolites pyoluteorin (Pit) and 2,4-diacetylphlorogIucinol (Phi) in vitro. Strain CHAO/pME3090 also overproduced Pit and Phi in the rhizosphere of wheat infected or not infected with Pythium ultimum. The biocontrol activity of the wild-type and recombinant Straitis was compared using various plant pathogen-host combinations in a gnotobiotic system. Antibiotic overproduction affected neither the protection of wheat against P. ultimum and Gaeumannomyces graminis var. tritici nor the growth of wheat plants. In contrast, strain CHA0/pME3090 showed an increased capacity to protect cucumber against Fusarium oxysporum f. sp. cucumerinum and Phomopsis sclerotioides, compared with the wild-type strain CHAO, The antibiotic overproducing strain protected tobacco roots significantly better against Thielaviopsis basicola than the wild-type strain but drastically reduced the growth of tobacco plants and was also toxic to the growth of sweet com. On King's B agar and on malt agar, the recombinant strain CHA0/pME3090 inhibited all pathogens more than did the parental strain CHAO. Synthetic Pit and Phi were toxic to all fungi tested. Tobacco and sweet com were more sensitive to synthetic Pit and Phi than were cucumber and wheat. There was no correlation between the sensitivity of the pathogens to the synthetic antibiotics and the degree of disease suppression by strain CHAO pME3090. However, there was a correlation between the sensitivity of the plants and the toxicity of the recombinant strain. We conclude that the plant species rather than the pathogen determines whether cosmid pME3090 in P. fluorescens strain CHAO leads to improved disease suppression.
Resumo:
null
Resumo:
The antidiuretic effect of vasopressin is mediated by V2 receptors (V2R) that are located in kidney connecting tubules and collecting ducts. This study provides evidence that V2R signaling is negatively regulated by regulator of G protein signaling 2 (RGS2), a member of the family of RGS proteins. This study demonstrates that (1) RGS2 expression in the kidney is restricted to the vasopressin-sensitive part of the nephron (thick ascending limb, connecting tubule, and collecting duct); (2) expression of RGS2 is rapidly upregulated by vasopressin; (3) the vasopressin-dependent accumulation of cAMP, the principal messenger of V2R signaling, is significantly higher in collecting ducts that are microdissected from the RGS2(-/-) mice compared with their wild-type littermates; and (4) analysis of urine output of mice that were exposed to water restriction followed by acute water loading revealed that RGS2(-/-) mice exhibit an increased renal responsiveness to vasopressin. It is proposed that RGS2 is involved in negative feedback regulation of V2R signaling.
Resumo:
We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.
Resumo:
An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkur approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from ~100 eV up to ~5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.
Resumo:
We study the eta'N interaction within a chiral unitary approach which includes piN , etaN and related pseudoscalar meson-baryon coupled channels. Since the SU(3) singlet does not contribute to the standard interaction and the eta' is mostly a singlet, the resulting scattering amplitude is very small and inconsistent with experimental estimations of the eta' N scattering length. The additional consideration of vector meson-baryon states into the coupled channel scheme, via normal and anomalous couplings of pseudoscalar to vector mesons, enhances substantially the eta' N amplitude. We also exploit the freedom of adding to the Lagrangian a new term, allowed by the symmetries of QCD, which couples baryons to the singlet meson of SU(3). Adjusting the unknown strength to the eta' N scattering length, we obtain predictions for the elastic eta'N -> etaN and inelastic eta' N -> etaN , piN , KLambda, KEpsilon cross sections at low eta' energies, and discuss their significance.
Resumo:
A screened Rutherford cross section is modified by means of a correction factor to obtain the proper transport cross section computed by partial¿wave analysis. The correction factor is tabulated for electron energies in the range 0¿100 keV and for elements in the range from Z=4 to 82. The modified screened Rutherford cross section is shown to be useful as an approximation for the simulation of plural and multiple scattering. Its performance and limitations are exemplified for electrons scattered in Al and Au.