792 resultados para Time-varying Risk
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.
Resumo:
Except the non-melanoma skin tumors, colorectal cancer is the second most common in the Southeastern Region of Brazil, the third most common in the Southern and Central Regions. It is also the forth most common in the Northern Region and it is the fifth one in the Northeastern. To assess pathological and clinical variables of colorectal Cancer is crucial to know the possible conclusions for the survival of patients and point out the characteristics in the progress of tumor, such as the profile of tumor invasion and its angiogenesis. This work focuses on analyzing clinically and pathologically some settings in colorectal cancer patients (CRC) in the city of Natal and its countryside through those variables as parameters of prognosis and determine the level of protein expression, for instance: E-cadherin (E-cad), beta- -catenin (β-cat), galectin-3 (gal-3), matrix metalloproteinases (MMP) 2 and 9 and vascular-endothelial growth factor alpha (α VEGF) in the tumor tissues. A retrospective study was done in colorectal cancer cases in the regions of Rio Grande do Norte state from 1995 to 2005, specifically in Natal city/RN/Brazil. The pathological and clinical variables, such as: age, gender, ethnicity, lifestyle, family history, the location of the primary tumor, level of differentiation, TDM staging, modified Dukes’, treatment and survival were analyzed. The pathological and clinical data were collected from medical records through a specific form and were filed on Excel. A total of 534 patients were selected from the Pathology Department file in this institution, however, 176 patients were excluded. 358 patients were included for Epidemiological analysis and its clinical and pathological correlations were selected. 180 patients were also selected for histological and immunohistochemical studies. The tumor progression of these selected proteins mentioned before were analyzed. The Paraffin blocks of these samples were treated by Microarray Tissue technique and its blades subjected to immunohistochemistry to test the intensity of these proteins in tumor tissues. The results of this analysis were correlated with clinicopathologic variables of patients. Statistical analysis using the chi-frame Pearson test and analysis of midlife by Kaplan-Meier curve was also utilized. P values < 0.05 were considered statistically significant. The average age of our sample was 58.8 years and 51.7 % were female. Alcohol consumption has increased by 1.71 time the risk of death by CCR (p = 0.034) and tobacco consumption increased 2.7 times the chance of developing tumors of high TNM stage (p = 0.001). Cancer patients had a family history of 3,833 times the chance of developing the CCR (p = 0.002). The expression of MMP-2 showed a significant association with tumors of high TNM stage (p <0.046) and mortality (p = 0.041). The α VEGF expression had statistically significant correlation with high TNM stage (p <0.009), degree of cell indifferentiation (p <0.025) and mortality (p <0.035). Expressions of E-cadherin and beta-catetina demonstrated tumor linked to high TNM stage (p = 0.0001) and Dukes› modified (p = 0.05), lesions in the rectum (p = 0.03 and p = 0.007, respectively), smoking (p = 0.05) and indifferentiation (p = 0.001). The expression of Gal-3 showed statistical significance with high TNM stage of patients (p = 0.01), smokers (p = 0.01), alcohol drinking (p = 0.03), indifferentiation (p = 0.0001) and mortality (p = 0.0001). Based on the results, therefore, we could realize that lifestyle and family history had correlation in the CCR prognosis, as well as MMP-2 expression, MMP-9, VEGF alpha, E-cadherin, Beta-catenin and Galectin-3 were important prognostic markers in tumor progression in colorectal cancer.
Resumo:
A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
The real-time optimization of large-scale systems is a difficult problem due to the need for complex models involving uncertain parameters and the high computational cost of solving such problems by a decentralized approach. Extremum-seeking control (ESC) is a model-free real-time optimization technique which can estimate unknown parameters and can optimize nonlinear time-varying systems using only a measurement of the cost function to be minimized. In this thesis, we develop a distributed version of extremum-seeking control which allows large-scale systems to be optimized without models and with minimal computing power. First, we develop a continuous-time distributed extremum-seeking controller. It has three main components: consensus, parameter estimation, and optimization. The consensus provides each local controller with an estimate of the cost to be minimized, allowing them to coordinate their actions. Using this cost estimate, parameters for a local input-output model are estimated, and the cost is minimized by following a gradient descent based on the estimate of the gradient. Next, a similar distributed extremum-seeking controller is developed in discrete-time. Finally, we consider an interesting application of distributed ESC: formation control of high-altitude balloons for high-speed wireless internet. These balloons must be steered into a favourable formation where they are spread out over the Earth and provide coverage to the entire planet. Distributed ESC is applied to this problem, and is shown to be effective for a system of 1200 ballons subjected to realistic wind currents. The approach does not require a wind model and uses a cost function based on a Voronoi partition of the sphere. Distributed ESC is able to steer balloons from a few initial launch sites into a formation which provides coverage to the entire Earth and can maintain a similar formation as the balloons move with the wind around the Earth.
Resumo:
We analyze democratic equity in council voting games (CVGs). In a CVG, a voting body containing all members delegates decision-making to a (time-varying) subset of its members, as describes, e.g., the relationship between the United Nations General Assembly and the United Nations Security Council (UNSC). We develop a theoretical framework for analyzing democratic equitability in CVGs at both the country and region levels, and for different assumptions regarding preference correlation. We apply the framework to evaluate the equitability of the UNSC, and the claims of those who seek to reform it. We find that the individual permanent members are overrepresented by between 21.3 times (United Kingdom) and 3.8 times (China) from a country-level perspective, while from a region perspective Eastern Europe is the most heavily overrepresented region with more than twice its equitable representation, and Africa the most heavily underrepresented. Our equity measures do not preclude some UNSC members from exercising veto rights, however.
Resumo:
This master thesis proposes a solution to the approach problem in case of unknown severe microburst wind shear for a fixed-wing aircraft, accounting for both longitudinal and lateral dynamics. The adaptive controller design for wind rejection is also addressed, exploiting the wind estimation provided by suitable estimators. It is able to successfully complete the final approach phase even in presence of wind shear, and at the same time aerodynamic envelope protection is retained. The adaptive controller for wind compensation has been designed by a backstepping approach and feedback linearization for time-varying systems. The wind shear components have been estimated by higher-order sliding mode schemes. At the end of this work the results are provided, an autonomous final approach in presence of microburst is discussed, performances are analyzed, and estimation of the microburst characteristics from telemetry data is examined.
Resumo:
Cette thèse se compose de trois articles sur les politiques budgétaires et monétaires optimales. Dans le premier article, J'étudie la détermination conjointe de la politique budgétaire et monétaire optimale dans un cadre néo-keynésien avec les marchés du travail frictionnels, de la monnaie et avec distortion des taux d'imposition du revenu du travail. Dans le premier article, je trouve que lorsque le pouvoir de négociation des travailleurs est faible, la politique Ramsey-optimale appelle à un taux optimal d'inflation annuel significativement plus élevé, au-delà de 9.5%, qui est aussi très volatile, au-delà de 7.4%. Le gouvernement Ramsey utilise l'inflation pour induire des fluctuations efficaces dans les marchés du travail, malgré le fait que l'évolution des prix est coûteuse et malgré la présence de la fiscalité du travail variant dans le temps. Les résultats quantitatifs montrent clairement que le planificateur s'appuie plus fortement sur l'inflation, pas sur l'impôts, pour lisser les distorsions dans l'économie au cours du cycle économique. En effet, il ya un compromis tout à fait clair entre le taux optimal de l'inflation et sa volatilité et le taux d'impôt sur le revenu optimal et sa variabilité. Le plus faible est le degré de rigidité des prix, le plus élevé sont le taux d'inflation optimal et la volatilité de l'inflation et le plus faible sont le taux d'impôt optimal sur le revenu et la volatilité de l'impôt sur le revenu. Pour dix fois plus petit degré de rigidité des prix, le taux d'inflation optimal et sa volatilité augmentent remarquablement, plus de 58% et 10%, respectivement, et le taux d'impôt optimal sur le revenu et sa volatilité déclinent de façon spectaculaire. Ces résultats sont d'une grande importance étant donné que dans les modèles frictionnels du marché du travail sans politique budgétaire et monnaie, ou dans les Nouveaux cadres keynésien même avec un riche éventail de rigidités réelles et nominales et un minuscule degré de rigidité des prix, la stabilité des prix semble être l'objectif central de la politique monétaire optimale. En l'absence de politique budgétaire et la demande de monnaie, le taux d'inflation optimal tombe très proche de zéro, avec une volatilité environ 97 pour cent moins, compatible avec la littérature. Dans le deuxième article, je montre comment les résultats quantitatifs impliquent que le pouvoir de négociation des travailleurs et les coûts de l'aide sociale de règles monétaires sont liées négativement. Autrement dit, le plus faible est le pouvoir de négociation des travailleurs, le plus grand sont les coûts sociaux des règles de politique monétaire. Toutefois, dans un contraste saisissant par rapport à la littérature, les règles qui régissent à la production et à l'étroitesse du marché du travail entraînent des coûts de bien-être considérablement plus faible que la règle de ciblage de l'inflation. C'est en particulier le cas pour la règle qui répond à l'étroitesse du marché du travail. Les coûts de l'aide sociale aussi baisse remarquablement en augmentant la taille du coefficient de production dans les règles monétaires. Mes résultats indiquent qu'en augmentant le pouvoir de négociation du travailleur au niveau Hosios ou plus, les coûts de l'aide sociale des trois règles monétaires diminuent significativement et la réponse à la production ou à la étroitesse du marché du travail n'entraîne plus une baisse des coûts de bien-être moindre que la règle de ciblage de l'inflation, qui est en ligne avec la littérature existante. Dans le troisième article, je montre d'abord que la règle Friedman dans un modèle monétaire avec une contrainte de type cash-in-advance pour les entreprises n’est pas optimale lorsque le gouvernement pour financer ses dépenses a accès à des taxes à distorsion sur la consommation. Je soutiens donc que, la règle Friedman en présence de ces taxes à distorsion est optimale si nous supposons un modèle avec travaie raw-efficace où seule le travaie raw est soumis à la contrainte de type cash-in-advance et la fonction d'utilité est homothétique dans deux types de main-d'oeuvre et séparable dans la consommation. Lorsque la fonction de production présente des rendements constants à l'échelle, contrairement au modèle des produits de trésorerie de crédit que les prix de ces deux produits sont les mêmes, la règle Friedman est optimal même lorsque les taux de salaire sont différents. Si la fonction de production des rendements d'échelle croissant ou decroissant, pour avoir l'optimalité de la règle Friedman, les taux de salaire doivent être égales.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active dendritic spines. Spine-head dynamics is modeled with a simple integrate-and-fire process, whilst communication between spines is mediated by the cable equation. In this paper we develop a computational framework that allows the study of multiple spiking events in a network of such spines embedded on a simple one-dimensional cable. In the first instance this system is shown to support saltatory waves with the same qualitative features as those observed in a model with Hodgkin-Huxley kinetics in the spine-head. Moreover, there is excellent agreement with the analytically calculated speed for a solitary saltatory pulse. Upon driving the system with time varying external input we find that the distribution of spines can play a crucial role in determining spatio-temporal filtering properties. In particular, the SDS model in response to periodic pulse train shows a positive correlation between spine density and low-pass temporal filtering that is consistent with the experimental results of Rose and Fortune [1999, Mechanisms for generating temporal filters in the electrosensory system. The Journal of Experimental Biology 202, 1281-1289]. Further, we demonstrate the robustness of observed wave properties to natural sources of noise that arise both in the cable and the spine-head, and highlight the possibility of purely noise induced waves and coherent oscillations.
Resumo:
The objective of this study was to gain an understanding of the effects of population heterogeneity, missing data, and causal relationships on parameter estimates from statistical models when analyzing change in medication use. From a public health perspective, two timely topics were addressed: the use and effects of statins in populations in primary prevention of cardiovascular disease and polypharmacy in older population. Growth mixture models were applied to characterize the accumulation of cardiovascular and diabetes medications among apparently healthy population of statin initiators. The causal effect of statin adherence on the incidence of acute cardiovascular events was estimated using marginal structural models in comparison with discrete-time hazards models. The impact of missing data on the growth estimates of evolution of polypharmacy was examined comparing statistical models under different assumptions for missing data mechanism. The data came from Finnish administrative registers and from the population-based Geriatric Multidisciplinary Strategy for the Good Care of the Elderly study conducted in Kuopio, Finland, during 2004–07. Five distinct patterns of accumulating medications emerged among the population of apparently healthy statin initiators during two years after statin initiation. Proper accounting for time-varying dependencies between adherence to statins and confounders using marginal structural models produced comparable estimation results with those from a discrete-time hazards model. Missing data mechanism was shown to be a key component when estimating the evolution of polypharmacy among older persons. In conclusion, population heterogeneity, missing data and causal relationships are important aspects in longitudinal studies that associate with the study question and should be critically assessed when performing statistical analyses. Analyses should be supplemented with sensitivity analyses towards model assumptions.
Resumo:
This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed time-varying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible real-time term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.