859 resultados para Time-sharing computer systems
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
Cryptosystems based on the hardness of lattice problems have recently acquired much importance due to their average-case to worst-case equivalence, their conjectured resistance to quantum cryptanalysis, their ease of implementation and increasing practicality, and, lately, their promising potential as a platform for constructing advanced functionalities. In this work, we construct “Fuzzy” Identity Based Encryption from the hardness of the Learning With Errors (LWE) problem. We note that for our parameters, the underlying lattice problems (such as gapSVP or SIVP) are assumed to be hard to approximate within supexponential factors for adversaries running in subexponential time. We give CPA and CCA secure variants of our construction, for small and large universes of attributes. All our constructions are secure against selective-identity attacks in the standard model. Our construction is made possible by observing certain special properties that secret sharing schemes need to satisfy in order to be useful for Fuzzy IBE. We also discuss some obstacles towards realizing lattice-based attribute-based encryption (ABE).
Resumo:
We introduce the idea of geo-locking through a mobile phone based photo sharing application called Picalilly (figure 1). Using its geo-locking feature, Picalilly allows its users to manually define geographical boundaries for sharing photos -- limiting sharing within user-defined boundaries as well as facilitating open sharing between strangers within such boundaries. To explore the potential of geo-locking, we carried out a small scale field trial of Picalilly involving two groups of students, who were part of a two-week long introduction program at a university. Our preliminary results show that Picalilly facilitated 1) sharing of 'places' and 2) localized explorations.
Resumo:
This paper discusses the idea and demonstrates an early prototype of a novel method of interacting with security surveillance footage using natural user interfaces in place of traditional mouse and keyboard interaction. Current surveillance monitoring stations and systems provide the user with a vast array of video feeds from multiple locations on a video wall, relying on the user’s ability to distinguish locations of the live feeds from experience or list based key-value pair of location and camera IDs. During an incident, this current method of interaction may cause the user to spend increased amounts time obtaining situational and location awareness, which is counter-productive. The system proposed in this paper demonstrates how a multi-touch screen and natural interaction can enable the surveillance monitoring station users to quickly identify the location of a security camera and efficiently respond to an incident.
Resumo:
Safety of repair, maintenance, alteration, and addition (RMAA) works have long been neglected because RMAAworks are often minute and only last for a short period of time. With rising importance of the RMAA sector in many developed societies, safety of RMAA works has begun to draw attention. Many RMAA contracting companies are small- and medium-sized enterprises (SMEs) that do not have comprehensive safety management systems. Existing safety legislation and regulations for new construction sites are not fully applicable to RMAAworks. Instead of relying on explicit and well-established safety systems, tacit safety knowledge plays an extremely important role in RMAA projects. To improve safety of RMAAworks, safety knowledge should be better managed. However, safety knowledge is difficult to capture in RMAA works. This study aims to examine safety management practices of RMAA contracting companies to see how safety knowledge of RMAA projects is managed. Findings show that RMAA contracting companies undertaking large-scale RMAA projects have more initiatives of safety management. Safety management of small-scale RMAA works relies heavily on the motivation of site supervisors and self-regulation of workers. Better tacit knowledge management improves safety performance. To enhance safety capability of RMAA contracting companies, a knowledge sharing culture should be cultivated. The government should provide assistance to SMEs to implement proper safety management practices in small-sized projects. Potentials of applying computer software technology in RMAA projects to capture, store, and retrieve safety information should be explored. Employees should be motivated to share safety knowledge by giving proper recognition to those who are willing to share.
Resumo:
A multi-secret sharing scheme allows several secrets to be shared amongst a group of participants. In 2005, Shao and Cao developed a verifiable multi-secret sharing scheme where each participant’s share can be used several times which reduces the number of interactions between the dealer and the group members. In addition some secrets may require a higher security level than others involving the need for different threshold values. Recently Chan and Chang designed such a scheme but their construction only allows a single secret to be shared per threshold value. In this article we combine the previous two approaches to design a multiple time verifiable multi-secret sharing scheme where several secrets can be shared for each threshold value. Since the running time is an important factor for practical applications, we will provide a complexity comparison of our combined approach with respect to the previous schemes.
Resumo:
Today the future is travelling rapidly towards us, shaped by all that which we have historically thrown into it. Much of what we have designed for our world over the ages, and much of what we continue to embrace in the pursuit of mainstream economic, cultural and social imperatives, embodies unacknowledged ‘time debts’. Every decision we make today has the potential to ‘give time to’, or take ‘time away’ from that future. This idea that ‘everything‘ inherently embodies ‘future time left’ is underlined by design futurist Tony Fry when he describes how we so often ‘waste’ or ‘take away’ ‘future time’. “In our endeavours to sustain ourselves in the short term we collectively act in destructive ways towards the very things we and all other beings fundamentally depend upon”
Resumo:
We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.
Resumo:
Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.
Resumo:
This paper describes a diode-clamped three-level inverter-based battery/supercapacitor direct integration scheme for renewable energy systems. The study is carried out for three different cases. In the first case, one of the two dc-link capacitors of the inverter is replaced by a battery bank and the other by a supercapacitor bank. In the second case, dc-link capacitors are replaced by two battery banks. In the third case, ordinary dc-link capacitors are replaced by two supercapacitor banks. The first system is supposed to mitigate both long-term and short-term power fluctuations while the last two systems are intended for smoothening long-term and short-term power fluctuations, respectively. These topologies eliminate the need for interfacing dc-dc converters and thus considerably improve the overall system efficiency. The major issue in aforementioned systems is the unavoidable imbalance in dc-link voltages. An analysis on the effects of unbalance and a space vector modulation method, which can produce undistorted current even in the presence of such unbalances, are presented in this paper. Furthermore, small vector selection-based power sharing and state of charge balancing techniques are proposed. Experimental results, obtained from a laboratory prototype, are presented to verify the efficacy of the proposed modulation and control techniques.
Resumo:
With the introduction of the Personally Controlled Health Record (PCEHR), the Australian public is being asked to accept greater responsibility for their healthcare by taking an active role in the management of personal health information. Although well designed, constructed and intentioned, policy and privacy concerns have resulted in an eHealth model that may impact future health sharing requirements. Hence, as a case study for a consumer eHealth initative in the Australian context, eHealth-as-a-Service (eHaaS) serves as a disruptive step in in the aggregation and transformation of health information for use as real-world knowledge. The strategic value of extending the community Health Record Bank (HRB) model lies in the ability to automatically draw on a multitude of relevant data repositories and sources to create a single source of the truth and to engage market forces to create financial sustainability. The opportunity to transform the beleaguered Australian PCEHR into a realisable and sustainable technology consumption model for patient safety is explored. Moreover, the current clerical focus of healthcare practitioners acting in the role of de facto record keepers is renegotiated to establish a shared knowledge creation landscape of action for safer patient interventions. To achieve this potential however requires a platform that will facilitate efficient and trusted unification of all health information available in real-time across the continuum of care. eHaaS provides a sustainable environment and encouragement to realise this potential.
Resumo:
Digital signature is a breakthrough of modern cryptographic systems. A (t, n) threshold digital signature allows every set of cardinality t or more (out-of n) co-signers to authenticate a message. In almost all existing threshold digital signatures the threshold parameter t is fixed. There are applications, however, in which the threshold parameter needs to be changed from time to time. This paper considers such a scenario, in order to discuss relevant problems, and proposes a model that solves the related problems.
Resumo:
Today’s economy is a knowledge-based economy in which knowledge is a crucial facilitator to individuals, as well as being an instigator of success. Due to the impact of globalisation, universities face new challenges and opportunities. Accordingly, they ought to be more innovative and have their own competitive advantages. One of the most important goals of universities is the promotion of students as professional knowledge workers. Therefore, knowledge sharing and transfer at the tertiary level between students and supervisors is vital in universities, as it decreases the budget and provides an affordable way to do research. Knowledge-sharing impact factors can be categorised in three groups, namely: organisational, individual, and technical factors. Individual barriers to knowledge sharing include: the lack of time and trust and the lack of communication skills and social networks. IT systems such as elearning, blogs and portals can increase the knowledge-sharing capability. However, it must be stated that IT systems are only tools and not solutions. Individuals are still responsible for sharing information and knowledge. This paper proposes a new research model to examine the effect of individual factors, organisational factors (learning strategy, trust culture, supervisory support) and technological factors on knowledge sharing in the research supervision process.
Resumo:
In this paper we contribute to the growing body of research into the use and design of technology in the kitchen. This research aims to identify opportunities for designing technologies that may augment existing cooking traditions and in particular familial recipe sharing practices. Using ethnographic techniques, we identify the homemade cookbook as a significant material and cultural artifact in the family kitchen. We report on findings from our study by providing descriptive accounts of various homemade cookbooks, and offer design considerations for digitally augmenting homemade cookbooks.
Resumo:
This tutorial primarily focuses on the technical challenges surrounding the design and implementation of Accountable-eHealth (AeH) systems. The potential benefits of shared eHealth records systems are promising for the future of improved healthcare; however, their uptake is hindered by concerns over the privacy and security of patient information. In the current eHealth environment, there are competing requirements between healthcare consumers' (i.e. patients) requirements and healthcare professionals' requirements. While consumers want control over their information, healthcare professionals want access to as much information as required in order to make well informed decisions. This conflict is evident in the review of Australia's PCEHR system. Accountable-eHealth systems aim to balance these concerns by implementing Information Accountability (IA) mechanisms. AeH systems create an eHealth environment where health information is available to the right person at the right time without rigid barriers whilst empowering the consumers with information control and transparency, thus, enabling the creation of shared eHealth records that can be useful to both patients and HCPs. In this half-day tutorial, we will discuss and describe the technical challenges surrounding the implementation of AeH systems and the solutions we have devised. A prototype AeH system will be used to demonstrate the functionality of AeH systems, and illustrate some of the proposed solutions. The topics that will be covered include: designing for usability in AeH systems, the privacy and security of audit mechanisms, providing for diversity of users, the scalability of AeH systems, and finally the challenges of enabling research and Big Data Analytics on shared eHealth Records while ensuring accountability and privacy are maintained.