931 resultados para Tidal flats.
Resumo:
An estuarine model is described which computes the dispersive and advective properties of the Severn Estuary. It was calibrated and validated using 50 measured salinity distributions and then used to predict the magnitude and sitings of the major inputs of dissolved cadmium levels throughout the estuary. The results provided an impetus for implementing tighter controls on effluents and for improving estimates of cadmium discharges from industrial sources. The model has also been used to investigate the sensitivity of the estuarine system to changes in dispersion; by considering large reductions in the dispersion coefficients it is hoped that the results might be indicative of the environmental consequences following the construction of a tidal power generating scheme.
Resumo:
Measurements describing the intratidal, spring-neap and seasonal variations of fine, cohesive, suspended particulate matter (SPM) concentrations at two sites (Calstock and Halton Quay) within the upper reaches of the Tamar Estuary, UK, are presented. The data were obtained using two, near-bed instrument packages. Correlations of daily-averaged SPM concentrations and fluxes with both runoff and tidal range during the separate deployments often showed a significant dependence on these variables. Where statistically significant, increasing tidal range led to enhanced SPM levels because of resuspension of bed sediments.
Resumo:
Weekly measurements of mesozooplankton (>76 mu m) and hydrographic parameters have been carried out since 1984 in the List Tidal Basin (northern Wadden Sea). Monthly water temperature significantly increased by 0.04 degrees C year. The largest increase by 3 degrees C in 22 years occurred in September, implying, an extension of the warm summer period. Mean annual copepod abundance and length of copepod season correlated significantly with mean temperature from January to May. Except for an increasing Acartia sp. abundance during spring (April-May), no longterm trends in copepod abundance were observed. The percentage of carnivorous zooplankton increased significantly since 1984 mainly due to a sudden increase in the cyclopoid copepod Oithona similis in 1997. We expect that global warming will lead to a longer copepod season and higher copepod abundances in the northern Wadden Sea.
Resumo:
Satellite altimetry has revolutionized our understanding of ocean dynamics thanks to frequent sampling and global coverage. Nevertheless, coastal data have been flagged as unreliable due to land and calm water interference in the altimeter and radiometer footprint and uncertainty in the modelling of high-frequency tidal and atmospheric forcing. Our study addresses the first issue, i.e. altimeter footprint contamination, via retracking, presenting ALES, the Adaptive Leading Edge Subwaveform retracker. ALES is potentially applicable to all the pulse-limited altimetry missions and its aim is to retrack both open ocean and coastal data with the same accuracy using just one algorithm. ALES selects part of each returned echo and models it with a classic ”open ocean” Brown functional form, by means of least square estimation whose convergence is found through the Nelder-Mead nonlinear optimization technique. By avoiding echoes from bright targets along the trailing edge, it is capable of retrieving more coastal waveforms than the standard processing. By adapting the width of the estimation window according to the significant wave height, it aims at maintaining the accuracy of the standard processing in both the open ocean and the coastal strip. This innovative retracker is validated against tide gauges in the Adriatic Sea and in the Greater Agulhas System for three different missions: Envisat, Jason-1 and Jason-2. Considerations of noise and biases provide a further verification of the strategy. The results show that ALES is able to provide more reliable 20-Hz data for all three missions in areas where even 1-Hz averages are flagged as unreliable in standard products. Application of the ALES retracker led to roughly a half of the analysed tracks showing a marked improvement in correlation with the tide gauge records, with the rms difference being reduced by a factor of 1.5 for Jason-1 and Jason-2 and over 4 for Envisat in the Adriatic Sea (at the closest point to the tide gauge).
Resumo:
A single tidal cycle survey in a Lagrangian reference frame was conducted in autumn 2010 to evaluate the impact of short-term, episodic and enhanced turbulent mixing on large chain-forming phytoplankton. Observations of turbulence using a free-falling microstructure profiler were undertaken, along with near-simultaneous profiles with an in-line digital holographic camera at station L4 (50° 15′ N 4° 13′ W, depth 50 m) in the Western English Channel. Profiles from each instrument were collected hourly whilst following a drogued drifter. Results from an ADCP attached to the drifter showed pronounced vertical shear, indicating that the water column structure consisted of two layers, restricting interpretation of the Lagrangian experiment to the upper ~ 25 m. Atmospheric conditions deteriorated during the mid-point of the survey, resulting in values of turbulent dissipation reaching a maximum of 10− 4 W kg− 1 toward the surface in the upper 10 m. Chain-forming phytoplankton > 200 μm were counted using the data from the holographic camera for the two periods, before and after the enhanced mixing event. As mixing increased phytoplankton underwent chain breakage, were dispersed by advection through their removal from the upper to lower layer and subjected to aggregation with other suspended material. Depth averaged counts of phytoplankton were reduced from a maximum of around 2050 L− 1 before the increased turbulence, to 1070 L− 1 after, with each of these mechanisms contributing to this reduction. These results demonstrate the sensitivity of phytoplantkon populations to moderate increases in turbulent activity, yielding consequences for accurate forecasting of the role played by phytoplankton in climate studies and also for the ecosystem in general in their role as primary producers.
Resumo:
Local-scale planning decisions are required by the existing Environmental Impact Assessment process to take account of the implications of a development on a range of environmental and social factors, and could therefore be supported by an ecosystem services approach. However, empirical assessments at a local scale within the marine environment have focused on only a single or limited set of services. This paper tests the applicability of the ecosystem services approach to environmental impact appraisal by considering how the identification and quantification of a comprehensive suite of benefits provided at a local scale might proceed in practice. A methodology for conducting an Environmental Benefits Assessment (EBA) is proposed, the underlying framework for which follows the recent literature by placing the emphasis on ecosystem benefits, as opposed to services. The EBA methodology also proposes metrics that can be quantified at local scale, and is tested using a case study of a hypothetical tidal barrage development in the Taw Torridge estuary in North Devon, UK. By suggesting some practical steps for assessing environmental benefits, this study aims to stimulate discussion and so advance the development of methods for implementing ecosystem service approaches at a local scale.
Resumo:
The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.
Resumo:
A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed.
Resumo:
1.Understanding which environmental factors drive foraging preferences is critical for the development of effective management measures, but resource use patterns may emerge from processes that occur at different spatial and temporal scales. Direct observations of foraging are also especially challenging in marine predators, but passive acoustic techniques provide opportunities to study the behaviour of echolocating species over a range of scales. 2.We used an extensive passive acoustic data set to investigate the distribution and temporal dynamics of foraging in bottlenose dolphins using the Moray Firth (Scotland, UK). Echolocation buzzes were identified with a mixture model of detected echolocation inter-click intervals and used as a proxy of foraging activity. A robust modelling approach accounting for autocorrelation in the data was then used to evaluate which environmental factors were associated with the observed dynamics at two different spatial and temporal scales. 3.At a broad scale, foraging varied seasonally and was also affected by seabed slope and shelf-sea fronts. At a finer scale, we identified variation in seasonal use and local interactions with tidal processes. Foraging was best predicted at a daily scale, accounting for site specificity in the shape of the estimated relationships. 4.This study demonstrates how passive acoustic data can be used to understand foraging ecology in echolocating species and provides a robust analytical procedure for describing spatio-temporal patterns. Associations between foraging and environmental characteristics varied according to spatial and temporal scale, highlighting the need for a multi-scale approach. Our results indicate that dolphins respond to coarser scale temporal dynamics, but have a detailed understanding of finer-scale spatial distribution of resources.
Resumo:
The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.
Resumo:
The QICS controlled release experiment demonstrates that leaks of carbon dioxide (CO2) gas can be detected by monitoring acoustic, geochemical and biological parameters within a given marine system. However the natural complexity and variability of marine system responses to (artificial) leakage strongly suggests that there are no absolute indicators of leakage or impact that can unequivocally and universally be used for all potential future storage sites. We suggest a multivariate, hierarchical approach to monitoring, escalating from anomaly detection to attribution, quantification and then impact assessment, as required. Given the spatial heterogeneity of many marine ecosystems it is essential that environmental monitoring programmes are supported by a temporally (tidal, seasonal and annual) and spatially resolved baseline of data from which changes can be accurately identified. In this paper we outline and discuss the options for monitoring methodologies and identify the components of an appropriate baseline survey.
Resumo:
A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed.
Resumo:
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability.
Resumo:
In the near future, the oceans will be subjected to a massive development of marine infrastructures, including offshore wind, tidal and wave energy farms and constructions for marine aquaculture. The development of these facilities will unavoidably exert environmental pressures on marine ecosystems. It is therefore crucial that the economic costs, the use of marine space and the environmental impacts of these activities remain within acceptable limits. Moreover, the installation of arrays of wave energy devices is still far from being economically feasible due to many combined aspects, such as immature technologies for energy conversion, local energy storage and moorings. Therefore, multi-purpose solutions combining renewable energy from the sea (wind, wave, tide), aquaculture and transportation facilities can be considered as a challenging, yet advantageous, way to boost blue growth. This would be due to the sharing of the costs of installation and using the produced energy locally to feed the different functionalities and optimizing marine spatial planning. This paper focuses on the synergies that may be produced by a multi-purpose offshore installation in a relatively calm sea, i.e., the Northern Adriatic Sea, Italy, and specifically offshore Venice. It analyzes the combination of aquaculture, energy production from wind and waves, and energy storage or transfer. Alternative solutions are evaluated based on specific criteria, including the maturity of the technology, the environmental impact, the induced risks and the costs. Based on expert judgment, the alternatives are ranked and a preliminary layout of the selected multi-purpose installation for the case study is proposed, to further allow the exploitation of the synergies among different functionalities.
Resumo:
This project was commissioned to generate an improved understanding of the sensitivities of seagrass habitats to pressures associated with human activities in the marine environment - to provide an evidence base to facilitate and support management advice for Marine Protected Areas; development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. Seagrass bed habitats are identified as a Priority Marine Feature (PMF) under the Marine (Scotland) Act 2010, they are also included on the OSPAR list of threatened and declining species and habitats, and are a Habitat of Principle Importance (HPI) under the Natural Environment and Rural Communities (NERC) Act 2006, in England and Wales. The purpose of this project was to produce sensitivity assessments with supporting evidence for the HPI, OSPAR and PMF seagrass/Zostera bed habitat definitions, clearly documenting the evidence behind the assessments and any differences between assessments. Nineteen pressures, falling in five categories - biological, hydrological, physical damage, physical loss, and pollution and other chemical changes - were assessed in this report. Assessments were based on the three British seagrasses Zostera marina, Z. noltei and Ruppia maritima. Z. marina var. angustifolia was considered to be a subspecies of Z. marina but it was specified where studies had considered it as a species in its own rights. Where possible other components of the community were investigated but the basis of the assessment focused on seagrass species. To develop each sensitivity assessment, the resistance and resilience of the key elements were assessed against the pressure benchmark using the available evidence. The benchmarks were designed to provide a ‘standard’ level of pressure against which to assess sensitivity. Overall, seagrass beds were highly sensitive to a number of human activities: • penetration or disturbance of the substratum below the surface; • habitat structure changes – removal of substratum; • physical change to another sediment type; • physical loss of habitat; • siltation rate changes including and smothering; and • changes in suspended solids. High sensitivity was recorded for pressures which directly impacted the factors that limit seagrass growth and health such as light availability. Physical pressures that caused mechanical modification of the sediment, and hence damage to roots and leaves, also resulted in high sensitivity. Seagrass beds were assessed as ‘not sensitive’ to microbial pathogens or ‘removal of target species’. These assessments were based on the benchmarks used. Z. marina is known to be sensitive to Labyrinthula zosterae but this was not included in the benchmark used. Similarly, ‘removal of target species’ addresses only the biological effects of removal and not the physical effects of the process used. For example, seagrass beds are probably not sensitive to the removal of scallops found within the bed but are highly sensitive to the effects of dredging for scallops, as assessed under the pressure penetration or disturbance of the substratum below the surface‘. This is also an example of a synergistic effect Assessing the sensitivity of seagrass bed biotopes to pressures associated with marine activities between pressures. Where possible, synergistic effects were highlighted but synergistic and cumulative effects are outside the scope off this study. The report found that no distinct differences in sensitivity exist between the HPI, PMF and OSPAR definitions. Individual biotopes do however have different sensitivities to pressures. These differences were determined by the species affected, the position of the habitat on the shore and the sediment type. For instance evidence showed that beds growing in soft and muddy sand were more vulnerable to physical damage than beds on harder, more compact substratum. Temporal effects can also influence the sensitivity of seagrass beds. On a seasonal time frame, physical damage to roots and leaves occurring in the reproductive season (summer months) will have a greater impact than damage in winter. On a daily basis, the tidal regime could accentuate or attenuate the effects of pressures depending on high and low tide. A variety of factors must therefore be taken into account in order to assess the sensitivity of a particular seagrass habitat at any location. No clear difference in resilience was established across the three seagrass definitions assessed in this report. The resilience of seagrass beds and the ability to recover from human induced pressures is a combination of the environmental conditions of the site, growth rates of the seagrass, the frequency and the intensity of the disturbance. This highlights the importance of considering the species affected as well as the ecology of the seagrass bed, the environmental conditions and the types and nature of activities giving rise to the pressure and the effects of that pressure. For example, pressures that result in sediment modification (e.g. pitting or erosion), sediment change or removal, prolong recovery. Therefore, the resilience of each biotope and habitat definitions is discussed for each pressure. Using a clearly documented, evidence based approach to create sensitivity assessments allows the assessment and any subsequent decision making or management plans to be readily communicated, transparent and justifiable. The assessments can be replicated and updated where new evidence becomes available ensuring the longevity of the sensitivity assessment tool. The evidence review has reduced the uncertainty around assessments previously undertaken in the MB0102 project (Tillin et al 2010) by assigning a single sensitivity score to the pressures as opposed to a range. Finally, as seagrass habitats may also contribute to ecosystem function and the delivery of ecosystem services, understanding the sensitivity of these biotopes may also support assessment and management in regard to these. Whatever objective measures are applied to data to assess sensitivity, the final sensitivity assessment is indicative. The evidence, the benchmarks, the confidence in the assessments and the limitations of the process, require a sense-check by experienced marine ecologists before the outcome is used in management decisions.